热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

新手入门Python编程的8个实用建议

这篇文章主要介绍了Python编程的8个实用建议,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑踩过的雷总结出来的,现在在这里分享一下给大家,因为很多伙伴是接触Python编程入门不久,也希望大家少走弯路,多少有些地方可以给大家借鉴。

目录先放出来

  • 项目文件事先做好归档
  • 永远不要手动修改源数据并且做好备份
  • 做好路径的正确配置
  • 代码必要的地方做好备注与说明
  • 加速你的Python循环代码
  • 可视化你的循环代码进度
  • 使用高效的异常捕获工具
  • 要多考虑代码健壮性

1. 项目文件事先做好归档

每次开始一个新工作的时候,以前的我总是贪图方便,Code、Data、文档都集中放在一个文件夹内,看起来很乱,一度让回溯过程十分痛苦,或者是换了部电脑,文件全都运行不行了,需要自行修改路径,十分痛苦。

经过自己一番探索,大家可以大致将项目分成几个子文件夹,code放在主文件夹里:


2. 永远不要手动修改源数据并且做好备份

我们需要对源数据进行好备份,方便我们下一次进行回溯,可以进行下一步的操作或者是对中间步骤的修改,而且,对代码等其他文件也是需要做好备份的,以免出现意外丢失。

这里来自良许Linux 的一篇文章,推荐了4个工具:

  • Git版本控制系统
  • Rsync文件备份
  • Dropbox云存储
  • Time Machine时光机器

更多的工具介绍和使用我这边就不展开,大家可以去自行了解呗。

3. 做好路径的正确配置

很多同学在写路径的时候都很喜欢直接用绝对路径,虽然一般情况下不会有什么问题,但如果代码共享给其他人学习或者运行的时候,问题就来了,很多情况下都不能直接跑通,

这里建议:

  • 使用相对路径:脚本位于主目录下,其他资源(如数据、第三方包等)在其同级或低级目录下,如 ./data/processed/test1.csv
  • 全局路径配置变量:
# 设置主目录
HOME_PATH = r'E:ML90615- PROJECT1'
# 读取数据
data = open(HOME_PATH+'/data/processed/test1.csv')
data = pd.read_csv(data)
data.head()

4. 代码必要的地方做好备注与说明

这个我相信大多数人都感同身受了,不信?拿回一个月前自己写的代码看看吧,看一下能看懂多少(如果没有做好备注说明的话)

5. 加速你的Python循环代码

这里推荐 云哥(Python与算法之美)的一篇文章:24式加速你的python

收藏起来,多看多几次,养成好习惯呗,这样子你写代码才会越来越快~

6. 可视化你的循环代码进度

这里介绍一个Python库,tqdm,先安装一下:pip install tqdm

这个是一个可以显示循环进度的库,有了它就可以更加运筹帷幄了。

大家可以看下面的例子:


7. 使用高效的异常捕获工具

异常bug定位,以前的我经常也是一条print()函数走到底,虽然说也没什么问题,但效率上还是会比较慢,后来发现了一个叫PySnooper的装饰器,仿佛发现了新大陆。

我们一般debug,都是在我们可能觉得会有问题的地方,去打印输出,看下实际输出了什么,然后思考问题所在,这需要我们去改code,非常细致地改,相比较直接加个装饰器,是十分麻烦的。

大家可以看看Example:

import pysnooper
@pysnooper.snoop('./file.log')
def number_to_bits(number):
 if number:
 bits = []
 while number:
 number, remainder = divmod(number, 2)
 bits.insert(0, remainder)
 return bits
 else:
 return [0]
number_to_bits(6)

我们把函数每一步的输出都保存为file.log,我们可以直接去看到底哪里出了问题。


项目地址:https://github.com/cool-RR/pysnooper

8. 要多考虑代码健壮性

何为代码的健壮性,顾名思义,就是可以抵挡得住各种异常场景的测试,异常处理工作由“捕获”和“抛出”两部分组成。“捕获”指的是使用 try ... except 包裹特定语句,妥当的完成错误流程处理。而恰当的使用 raise 主动“抛出”异常,更是优雅代码里必不可少的组成部分,下面总结几点供大家参考:

1)知道要传入的参数是什么,类型,个数 (异常处理,逻辑判断)

def add(a, b):
 if isinstance(a, int) and isinstance(b, int):
 return a+b
 else:
 return '参数类型错误'
print(add(1, 2))
print(add(1, 'a'))

2)只做最精准的异常捕获

我们有的时候想着让脚本work才是王道,所以不管三七二十一就搞一个大大的try...except把整块代码包裹起来,但这样很容易把原本该被抛出的 AttibuteError 吞噬了。从而给我们的 debug 过程增加了不必要的麻烦。

所以,我们永远只捕获那些可能会抛出异常的语句块,而且尽量只捕获精确的异常类型,而不是模糊的 Exception。

from requests.exceptions import RequestException
def save_website_title(url, filename):
 try:
 resp = requests.get(url)
 except RequestException as e:
 print(f'save failed: unable to get page content: {e}')
 return False
# 这段正则操作本身就是不应该抛出异常的,所以我们没必要使用 try 语句块
# 假如 group 被误打成了 grop 也没关系,程序马上就会通过 AttributeError 来
# 告诉我们。
obj = re.search(r'', resp.text)
if not obj:
 print('save failed: title tag not found in page content')
 return False
title = obj.group(1)
try: with open(filename, 'w') as fp:
 fp.write(title)
except IOError as e:
 print(f'save failed: unable to write to file {filename}: {e}')
 return False
else:
 return True

3)异常处理不应该喧宾夺主

像上一条说到的异常捕获要精准,但如果每一个都很精准的话,其实我们的代码里就会有很多try...except语句块,以至于扰乱核心代码,代码整体阅读性。

这里,我们可以利用上下文管理器来改善我们的异常处理流程,简化重复的异常处理逻辑。

class raise_api_error:
"""captures specified exception and raise ApiErrorCode instead
:raises: AttributeError if code_name is not valid
"""
def __init__(self, captures, code_name):
 self.captures = captures
 self.code = getattr(error_codes, code_name)
def __enter__(self):
 # 该方法将在进入上下文时调用
 return self
def __exit__(self, exc_type, exc_val, exc_tb):
 # 该方法将在退出上下文时调用
 # exc_type, exc_val, exc_tb 分别表示该上下文内抛出的
 # 异常类型、异常值、错误栈
 if exc_type is None:
 return False
 if exc_type == self.captures:
 raise self.code from exc_val
 return False

在上面的代码里,我们定义了一个名为 raise_api_error 的上下文管理器,它在进入上下文时什么也不做。但是在退出上下文时,会判断当前上下文中是否抛出了类型为 self.captures 的异常,如果有,就用 APIErrorCode 异常类替代它。

使用上下文管理器后,简洁的代码如下:

def upload_avatar(request):
 """用户上传新头像"""
with raise_api_error(KeyError, 'AVATAR_FILE_NOT_PROVIDED'):
 avatar_file = request.FILES['avatar']
with raise_api_error(ResizeAvatarError, 'AVATAR_FILE_INVALID'),
 raise_api_error(FileTooLargeError, 'AVATAR_FILE_TOO_LARGE'):
 resized_avatar_file = resize_avatar(avatar_file)
with raise_api_error(Exception, 'INTERNAL_SERVER_ERROR'):
 request.user.avatar = resized_avatar_file
 request.user.save()
return HttpResponse({})

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • CentOS7源码编译安装MySQL5.6
    2019独角兽企业重金招聘Python工程师标准一、先在cmake官网下个最新的cmake源码包cmake官网:https:www.cmake.org如此时最新 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • 在现代网络环境中,两台计算机之间的文件传输需求日益增长。传统的FTP和SSH方式虽然有效,但其配置复杂、步骤繁琐,难以满足快速且安全的传输需求。本文将介绍一种基于Go语言开发的新一代文件传输工具——Croc,它不仅简化了操作流程,还提供了强大的加密和跨平台支持。 ... [详细]
  • 解决微信电脑版无法刷朋友圈问题:使用安卓远程投屏方案
    在工作期间想要浏览微信和朋友圈却不太方便?虽然微信电脑版目前不支持直接刷朋友圈,但通过远程投屏技术,可以轻松实现在电脑上操作安卓设备的功能。 ... [详细]
  • 从零开始构建完整手机站:Vue CLI 3 实战指南(第一部分)
    本系列教程将引导您使用 Vue CLI 3 构建一个功能齐全的移动应用。我们将深入探讨项目中涉及的每一个知识点,并确保这些内容与实际工作中的需求紧密结合。 ... [详细]
  • 本文详细记录了在银河麒麟操作系统和龙芯架构上使用 Qt 5.15.2 进行项目打包时遇到的问题及解决方案,特别关注于 linuxdeployqt 工具的应用。 ... [详细]
  • Composer Registry Manager:PHP的源切换管理工具
    本文介绍了一个用于Composer的源切换管理工具——Composer Registry Manager。该项目旨在简化Composer包源的管理和切换,避免与常见的CRM系统混淆,并提供了详细的安装和使用指南。 ... [详细]
  • 随着生活节奏的加快和压力的增加,越来越多的人感到不快乐。本文探讨了现代社会中导致人们幸福感下降的各种因素,并提供了一些改善建议。 ... [详细]
  • Python中HOG图像特征提取与应用
    本文介绍如何在Python中使用HOG(Histogram of Oriented Gradients)算法进行图像特征提取,探讨其在目标检测中的应用,并详细解释实现步骤。 ... [详细]
author-avatar
别拿明天会好做借口
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有