热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

新手入门Python编程的8个实用建议

这篇文章主要介绍了Python编程的8个实用建议,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑踩过的雷总结出来的,现在在这里分享一下给大家,因为很多伙伴是接触Python编程入门不久,也希望大家少走弯路,多少有些地方可以给大家借鉴。

目录先放出来

  • 项目文件事先做好归档
  • 永远不要手动修改源数据并且做好备份
  • 做好路径的正确配置
  • 代码必要的地方做好备注与说明
  • 加速你的Python循环代码
  • 可视化你的循环代码进度
  • 使用高效的异常捕获工具
  • 要多考虑代码健壮性

1. 项目文件事先做好归档

每次开始一个新工作的时候,以前的我总是贪图方便,Code、Data、文档都集中放在一个文件夹内,看起来很乱,一度让回溯过程十分痛苦,或者是换了部电脑,文件全都运行不行了,需要自行修改路径,十分痛苦。

经过自己一番探索,大家可以大致将项目分成几个子文件夹,code放在主文件夹里:


2. 永远不要手动修改源数据并且做好备份

我们需要对源数据进行好备份,方便我们下一次进行回溯,可以进行下一步的操作或者是对中间步骤的修改,而且,对代码等其他文件也是需要做好备份的,以免出现意外丢失。

这里来自良许Linux 的一篇文章,推荐了4个工具:

  • Git版本控制系统
  • Rsync文件备份
  • Dropbox云存储
  • Time Machine时光机器

更多的工具介绍和使用我这边就不展开,大家可以去自行了解呗。

3. 做好路径的正确配置

很多同学在写路径的时候都很喜欢直接用绝对路径,虽然一般情况下不会有什么问题,但如果代码共享给其他人学习或者运行的时候,问题就来了,很多情况下都不能直接跑通,

这里建议:

  • 使用相对路径:脚本位于主目录下,其他资源(如数据、第三方包等)在其同级或低级目录下,如 ./data/processed/test1.csv
  • 全局路径配置变量:
# 设置主目录
HOME_PATH = r'E:ML90615- PROJECT1'
# 读取数据
data = open(HOME_PATH+'/data/processed/test1.csv')
data = pd.read_csv(data)
data.head()

4. 代码必要的地方做好备注与说明

这个我相信大多数人都感同身受了,不信?拿回一个月前自己写的代码看看吧,看一下能看懂多少(如果没有做好备注说明的话)

5. 加速你的Python循环代码

这里推荐 云哥(Python与算法之美)的一篇文章:24式加速你的python

收藏起来,多看多几次,养成好习惯呗,这样子你写代码才会越来越快~

6. 可视化你的循环代码进度

这里介绍一个Python库,tqdm,先安装一下:pip install tqdm

这个是一个可以显示循环进度的库,有了它就可以更加运筹帷幄了。

大家可以看下面的例子:


7. 使用高效的异常捕获工具

异常bug定位,以前的我经常也是一条print()函数走到底,虽然说也没什么问题,但效率上还是会比较慢,后来发现了一个叫PySnooper的装饰器,仿佛发现了新大陆。

我们一般debug,都是在我们可能觉得会有问题的地方,去打印输出,看下实际输出了什么,然后思考问题所在,这需要我们去改code,非常细致地改,相比较直接加个装饰器,是十分麻烦的。

大家可以看看Example:

import pysnooper
@pysnooper.snoop('./file.log')
def number_to_bits(number):
 if number:
 bits = []
 while number:
 number, remainder = divmod(number, 2)
 bits.insert(0, remainder)
 return bits
 else:
 return [0]
number_to_bits(6)

我们把函数每一步的输出都保存为file.log,我们可以直接去看到底哪里出了问题。


项目地址:https://github.com/cool-RR/pysnooper

8. 要多考虑代码健壮性

何为代码的健壮性,顾名思义,就是可以抵挡得住各种异常场景的测试,异常处理工作由“捕获”和“抛出”两部分组成。“捕获”指的是使用 try ... except 包裹特定语句,妥当的完成错误流程处理。而恰当的使用 raise 主动“抛出”异常,更是优雅代码里必不可少的组成部分,下面总结几点供大家参考:

1)知道要传入的参数是什么,类型,个数 (异常处理,逻辑判断)

def add(a, b):
 if isinstance(a, int) and isinstance(b, int):
 return a+b
 else:
 return '参数类型错误'
print(add(1, 2))
print(add(1, 'a'))

2)只做最精准的异常捕获

我们有的时候想着让脚本work才是王道,所以不管三七二十一就搞一个大大的try...except把整块代码包裹起来,但这样很容易把原本该被抛出的 AttibuteError 吞噬了。从而给我们的 debug 过程增加了不必要的麻烦。

所以,我们永远只捕获那些可能会抛出异常的语句块,而且尽量只捕获精确的异常类型,而不是模糊的 Exception。

from requests.exceptions import RequestException
def save_website_title(url, filename):
 try:
 resp = requests.get(url)
 except RequestException as e:
 print(f'save failed: unable to get page content: {e}')
 return False
# 这段正则操作本身就是不应该抛出异常的,所以我们没必要使用 try 语句块
# 假如 group 被误打成了 grop 也没关系,程序马上就会通过 AttributeError 来
# 告诉我们。
obj = re.search(r'', resp.text)
if not obj:
 print('save failed: title tag not found in page content')
 return False
title = obj.group(1)
try: with open(filename, 'w') as fp:
 fp.write(title)
except IOError as e:
 print(f'save failed: unable to write to file {filename}: {e}')
 return False
else:
 return True

3)异常处理不应该喧宾夺主

像上一条说到的异常捕获要精准,但如果每一个都很精准的话,其实我们的代码里就会有很多try...except语句块,以至于扰乱核心代码,代码整体阅读性。

这里,我们可以利用上下文管理器来改善我们的异常处理流程,简化重复的异常处理逻辑。

class raise_api_error:
"""captures specified exception and raise ApiErrorCode instead
:raises: AttributeError if code_name is not valid
"""
def __init__(self, captures, code_name):
 self.captures = captures
 self.code = getattr(error_codes, code_name)
def __enter__(self):
 # 该方法将在进入上下文时调用
 return self
def __exit__(self, exc_type, exc_val, exc_tb):
 # 该方法将在退出上下文时调用
 # exc_type, exc_val, exc_tb 分别表示该上下文内抛出的
 # 异常类型、异常值、错误栈
 if exc_type is None:
 return False
 if exc_type == self.captures:
 raise self.code from exc_val
 return False

在上面的代码里,我们定义了一个名为 raise_api_error 的上下文管理器,它在进入上下文时什么也不做。但是在退出上下文时,会判断当前上下文中是否抛出了类型为 self.captures 的异常,如果有,就用 APIErrorCode 异常类替代它。

使用上下文管理器后,简洁的代码如下:

def upload_avatar(request):
 """用户上传新头像"""
with raise_api_error(KeyError, 'AVATAR_FILE_NOT_PROVIDED'):
 avatar_file = request.FILES['avatar']
with raise_api_error(ResizeAvatarError, 'AVATAR_FILE_INVALID'),
 raise_api_error(FileTooLargeError, 'AVATAR_FILE_TOO_LARGE'):
 resized_avatar_file = resize_avatar(avatar_file)
with raise_api_error(Exception, 'INTERNAL_SERVER_ERROR'):
 request.user.avatar = resized_avatar_file
 request.user.save()
return HttpResponse({})

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 非线性门控感知器算法的实现与应用分析 ... [详细]
  • 深入解析监督学习的核心概念与应用
    本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • Visual Studio Code (VSCode) 是一款功能强大的源代码编辑器,支持多种编程语言,具备丰富的扩展生态。本文将详细介绍如何在 macOS 上安装、配置并使用 VSCode。 ... [详细]
  • 微软推出Windows Terminal Preview v0.10
    微软近期发布了Windows Terminal Preview v0.10,用户可以在微软商店或GitHub上获取这一更新。该版本在2月份发布的v0.9基础上,新增了鼠标输入和复制Pane等功能。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
author-avatar
别拿明天会好做借口
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有