热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

遗传算法matlab_三分钟学会遗传算法

遗传算法此节介绍最著名的遗传算法(GA)。遗传算法属于进化算法,基本思想是取自“物竞天泽、适者生存”的进化法则。简单来说,遗传算法就是将问题编码成为染色
3bd4a351e7ea6608d1285258bfe4dc22.png

遗传算法

此节介绍最著名的遗传算法(GA)。遗传算法属于进化算法,基本思想是取自“物竞天泽、适者生存”的进化法则。简单来说,遗传算法就是将问题编码成为染色体,然后经过不断选择、交叉、变异等操作来更新染色体的编码并进行迭代,每次迭代保留上一代好的染色体,丢弃差的染色体,最终达到满足目标的最终染色体。整个流程由下图构成(手写,见谅 -_-!!)

337b02735fe65b0704da0728ad67eabd.png

流程图

步骤由以下几步构成:

编码(coding)——首先初始化及编码。在此步,根据问题或者目标函数(objective function)构成解数据(solutions),在遗传算法中,该解数据就被称为染色体(chromosome)。值得一提的是,遗传算法为多解(population based)算法,所以会有多条染色体。初始化中会随机生成N条染色体,, 这里表示染色体包含了n条。其中 ,这里表示第i条染色体由d维数值构成。GA会以这个N个数据作为初始点开始进行进化。

评估适应度(evaluate fitness)——这一步用染色体来进行目标函数运算,染色体的好坏将被指明。

选择(selection)——从当前染色体中挑选出优良的个体,以一定概率使他们成为父代进行交叉或者变异操作,他们的优秀基因后代得到保留。物竞天择这里得以体现。

交叉(crossover)——父代的两个两个染色体,通过互换染色体构成新的染色体。例如下图,父亲母亲各提供两个基因给我。这样我既保留了父母的基于,同时又有自己的特性。

a0a9d620c943fce0dc8bf927e4e3106a.png

交叉

变异(mutation)——以一定概率使基因发生突变。该算子一般以较低概率发生。如下图所示:

7f74679213ac5278179ffafb8cd93784.png

变异

下面我们将一步一步为各位呈现如何用matlab编写一个简单的GA算法。

本问题为实数最小化minimization问题。我们需要在解空间内找到最小值或近似最小值,此处我们使用sphere函数作为目标函数(读者可以自行修改为其他的目标函数)。

e22d134875c1532ac861cc7a386b0d63.png

sphere function

  • 初始化:在这一步中,我们将在给定问题空间内生成随机解,代码如下:

% %% 初始化% % 输入:chromes_size,dim维数,lb下界,ub上界% % 输出:chromes新种群function chromes=init_chromes(chromes_size,dim,lb,ub) % 上下界中随机生成染色体 chromes = rand(chromes_size,dim)*(ub-lb)+lb;end

  • 选择:选择是从当前代中挑选优秀的染色体保留以繁殖下一代。我们这里采取的方法是俄罗斯轮盘选择方式。谁的解优,谁获得选中的概率越高。首先,我们需要先求出各染色体的fitness倒数。
  • ,然后求出各染色体的比重,比重越大,被保留机会越大。。代码如下:

%% 选择%俄罗斯轮盘赌function [newchromes,newfitness] = selection(chromes,fitness) weights = 1./fitness; % fitness倒数 totalfit=sum(weights); % 累加所有weights totalf = weights./totalfit; %求出各染色体比重 index = []; for i = 1:size(chromes,1) % 循环选出较优染色体 pick = rand; while pick == 0 pick = rand; end for j = 1:size(chromes,1) pick = pick - totalf(j); if pick<0 index = [index j]; break end end end newchromes =chromes(index,:); newfitness = fitness(index);end

  • 交叉:此步会随机选取两个选择过后的染色体作为父代,从两个染色体中各截取一部分基因生成新的染色体,代码如下:

%% 交叉function newchromes = crossover(chromes,pc) % 生成一个新的解 newchromes = ones(size(chromes)); for i = 1:size(chromes,1) % 随机选取两个染色体 parents=randperm(10,2); %随机选取一个位置 pos = round(rand*size(chromes,2)); if(rand变异:以一各小概率生成随机变异一个gene,代码如下:

% 变异function newchromes= muatation(chromes,pm,lb,ub) for i = 1:size(chromes,1) newchromes(i,:) = chromes(i,:); if (rand主函数,首先初始化各参数,然后进行迭代,当满足终止条件停止:

% 清除workspace,清屏clearclc % 染色体数量chromes_size = 20;% 问题维数dim = 10;% 交叉概率pc =0.9;% 变异概率pm = 0.2;% 问题上下边界lb = -1;ub = 1;% 循环次数maxiter = 1000;% 目标方程namefunc= &#39;objfun&#39;;fd = str2func(namefunc);​% 初始化chromes = init_chromes(chromes_size,dim,lb,ub);% 求个染色体fitness for i = 1:chromes_size fitness(i)=feval(fd,chromes(i,:)); end% 求出最优解 [bestfitness bestindex]=min(fitness); bestchrome = chromes(bestindex,:); % 主循环for iter=1:maxiter % 选择 [chromes,newfitness] = selection(chromes,fitness); % 交叉 chromes= crossover(chromes,pc); % 变异 chromes= muatation(chromes,pm,lb,ub); % 更新最优 for i = 1:chromes_size fitness(i)=feval(fd,chromes(i,:)); if fitness(i)

运行之后生成一个fitness下降曲线,如下图:

2cf2ce7dc95afd559e8617085616c4bd.png

适应度下降曲线

遗传算法大大提升了寻优问题的通用性,因为遗传算法属于stochastic algorithm,不再是Deterministic algorithm(如果各位对此感兴趣,请留言,我可进一步讲解)。

但是有些显著缺陷还是明显影响该算法效率,主要问题如下:

premature,过早收敛,极易陷入局部最优解初始点对算法结果影响巨大,初始点好的解效果好,反之亦然。

下一节,将介绍群智能算法的代表之作——粒子群寻优算法。

如有任何疑问请留言,欢迎评论交流,创作不易,请勿抄袭,请收藏,关注,转发~



推荐阅读
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文详细介绍了如何解决Uploadify插件在Internet Explorer(IE)9和10版本中遇到的点击失效及JQuery运行时错误问题。通过修改相关JavaScript代码,确保上传功能在不同浏览器环境中的一致性和稳定性。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • IneedtofocusTextCellsonebyoneviaabuttonclick.ItriedlistView.ScrollTo.我需要通过点击按钮逐个关注Tex ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 本文总结了在使用Ionic 5进行Android平台APK打包时遇到的问题,特别是针对QRScanner插件的改造。通过详细分析和提供具体的解决方法,帮助开发者顺利打包并优化应用性能。 ... [详细]
  • JavaScript中属性节点的类型及应用
    本文深入探讨了JavaScript中属性节点的不同类型及其在实际开发中的应用,帮助开发者更好地理解和处理HTML元素的属性。通过具体的案例和代码示例,我们将详细解析如何操作这些属性节点。 ... [详细]
  • 在使用 DataGridView 时,如果在当前单元格中输入内容但光标未移开,点击保存按钮后,输入的内容可能无法保存。只有当光标离开单元格后,才能成功保存数据。本文将探讨如何通过调用 DataGridView 的内置方法解决此问题。 ... [详细]
  • 在 Swift 编程中,遇到错误提示“一元运算符 '!' 不能应用于 '()' 类型的操作数”,通常是因为尝试对没有返回值的方法或函数应用逻辑非运算符。本文将详细解释该错误的原因,并提供解决方案。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
author-avatar
张嫱的小屋_133
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有