热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

YOLOv5+CLIP=搜图+裁剪

文章来源机器之心编辑:蛋酱给Crop-CLIP一个口令,就能自动搜图,还能帮忙裁剪出图片中的关键部分。经常找图的人都知道,根

文章来源  机器之心  编辑:蛋酱

给 Crop-CLIP 一个口令,就能自动搜图,还能帮忙裁剪出图片中的关键部分。

经常找图的人都知道,根据检索关键词组寻找理想中的照片是件很麻烦的事情。

打开搜索引擎或无版权图片网站,输入关键词,如果幸运的话,可能会在第一页或前 N 个检索结果中找到想要的图像。这种搜索方式仍然是基于图片标签进行的。

自从 2021 年 1 月,OpenAI 推出了名为 CLIP 的神经网络,找图就进入了语义搜索时代。CLIP 建立在零样本迁移、自然语言监督、多模态学习的大量工作基础之上,因此它可以从自然语言监督中有效地学习视觉概念。

语义搜索不会试图为输入短语中的单词找到精确匹配,而是捕获上下文和单词之间的更广泛的关系,然后检索与搜索查询的上下文密切相关的结果。

近日,一位开发者将 YOLOv5 和 CLIP 结合起来,在使用关键词检索图片内容的同时,直接精确裁剪出包含检索主题的那一部分。

0fa616690bd66463e5c0a2c979772406.png

在这张图中,检索的关键词是「Whats the time」。

  • 项目地址:https://github.com/vijishmadhavan/Crop-CLIP

  • 在线试用地址:https://huggingface.co/spaces/Vijish/Crop-CLIP

先看几个示例,比如你输入关键词「卫衣男」,效果如下图:

1039993763cb7e699b95cba32ebd29e7.png

关键词「威士忌酒瓶」:

14976a8be77fae712a55cadd8124ae22.png

输入关键词「计算机」,就不会包含水杯和耳机:

f407e7489ff05467da4034f742b2f89d.png

惊喜的是,它也能认出「Jeff Dean」:

7a9022be62b6ee5cdf8771db8c577e57.png

怎么实现的?

CLIP 是用大量带有对应标题的图像进行训练的,因此它学会了理解哪个标题与哪个图片相匹配。

用户可以给出一个随机图像,并在向量空间中找到该图像的余弦相似度,其中包含两个短语向量:「这是狗的照片吗?」、「这是猫的照片吗?」。模型会查看哪一个具有最高的相似度,然后找到图像的类别。某种程度上说,CLIP 具有像 GPT-2 和 GPT-3 一样的零样本分类能力。

1e86b42ff5b7e7210ecfc3f32aa5af84.png

图源:OpenAI CLIP 博客。

和目标检测器 YOLOv5 相结合之后,CLIP 在语义搜索图像的基础上增加了裁剪能力,变身 Crop-CLIP。

  • 检测和裁剪对象 (yolov5s)

  • 使用 CLIP 对裁剪后的图像进行编码

  • 使用 CLIP 编码搜索查询

  • 找到最佳匹配部分

Crop-CLIP 也可用于创建数据集,需要在代码中进行一些更改,进行批量搜索查询。如下图所示,Jack Daniels 威士忌酒瓶的图像已被裁剪并保存。

7f9778bbf679c97561939db8aa54a3d6.png

项目作者 Vijish Madhavan 是一位自由开发者,现居英国,是利物浦约翰摩尔斯大学的硕士生。

1243baa6d428caacaf8686bc3287950c.png

但作者也提到了一点「限制」,Crop-CLIP 严重依赖目标检测器 YOLOv5,鉴于 YOLOv5 是在 COCO 数据集上进行预训练的目标检测架构和模型,因此 Crop-CLIP 检测过程中的类别会依赖于 COCO 中的类别。

所以在机器之心编辑部的试用过程中,也会出现不同程度的翻车事故。

想要草莓,结果却是金桔:

6d7ed7940e58b7ae326e6aa1eec805fb.png

想要猫咪,结果却是螃蟹:

cb2305431712a1bfab2146cab1e33153.png

这两张输出结果,刘能看了也要叹气:

b2c11a1628b1a49b1856179f7b99effa.png

ca0c3047f33e4d782b9ddf0c3749f676.png

至少,这个项目是一种有趣的创新,在后续的优化中,相信作者也会对数据集等方面进行改进,实现更好的搜图效果。

© THE END 

转载请联系机器之心获得授权

猜您喜欢:

超110篇!CVPR 2021最全GAN论文汇总梳理!

超100篇!CVPR 2020最全GAN论文梳理汇总!

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

e6d28290decf4285ff9078198ce4ff83.png


推荐阅读
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 使用 Jupyter Notebook 实现 Markdown 编写与代码运行
    Jupyter Notebook 是一个开源的基于网页的应用程序,允许用户在同一文档中编写 Markdown 文本和运行多种编程语言的代码,并实时查看运行结果。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 基于OpenCV的图像拼接技术实践与示例代码解析
    图像拼接技术在全景摄影中具有广泛应用,如手机全景拍摄功能,通过将多张照片根据其关联信息合成为一张完整图像。本文详细探讨了使用Python和OpenCV库实现图像拼接的具体方法,并提供了示例代码解析,帮助读者深入理解该技术的实现过程。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 在第七天的深度学习课程中,我们将重点探讨DGL框架的高级应用,特别是在官方文档指导下进行数据集的下载与预处理。通过详细的步骤说明和实用技巧,帮助读者高效地构建和优化图神经网络的数据管道。此外,我们还将介绍如何利用DGL提供的模块化工具,实现数据的快速加载和预处理,以提升模型训练的效率和准确性。 ... [详细]
author-avatar
itbases
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有