热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【YOLO源码解读】

传统CV主要是关于mid-level的cv技法,包括但不限于:SIFT特征点:(这个最重要)a.图像平滑(高斯核卷积)b.光照不变形(图像颜色变化)c.Imagepyramid,

传统CV

主要是关于 mid-level 的 cv 技法,包括但不限于:

  1. SIFT 特征点:(这个最重要)
    a. 图像平滑(高斯核卷积)
    b. 光照不变形(图像颜色变化)
    c. Image pyramid, DoG (高斯核卷积)
    d. Harris 角点 (泰勒展开)
    e. 极值点(线性插值)
    f. 特征向量的生成(旋转不变形)
  2. 其他相关特征点, 包括但不限于: HoG, SURF, ORB, FAST 等
  3. Haar 特征,Integral Image(积分图)
  4. 传统 ML 方法:
    SVM,Decision Tree, Logistic Regression, Linear Regression, Neural Network, Adaboost


Schedule

在这里插入图片描述

I. Two Stage Detection

A. RCNN: NMS Series
B. Fast RCNN: ROI Series
C. Faster RCNN: RPN + Anchor
D. Some Resources

II. One Stage Detection

E. Yolo V1: 1st Trial
F. Yolo V2: Anchor + Loss G. Yolo V3: FPN
H. Yolo V4: Tricks<


推荐阅读
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • MySQL DateTime 类型数据处理及.0 尾数去除方法
    本文介绍如何在 MySQL 中处理 DateTime 类型的数据,并解决获取数据时出现的.0尾数问题。同时,探讨了不同场景下的解决方案,确保数据格式的一致性和准确性。 ... [详细]
  • 不确定性|放入_华为机试题 HJ9提取不重复的整数
    不确定性|放入_华为机试题 HJ9提取不重复的整数 ... [详细]
  • 本文详细介绍了Java中的三大类设计模式:创建型模式、结构型模式和行为型模式,并探讨了设计模式遵循的六大原则,帮助开发者更好地理解和应用这些模式。 ... [详细]
  • 本文详细探讨了 Django 的 ORM(对象关系映射)机制,重点介绍了其如何通过 Python 元类技术实现数据库表与 Python 类的映射。此外,文章还分析了 Django 中各种字段类型的继承结构及其与数据库数据类型的对应关系。 ... [详细]
  • 本文介绍了 Winter-1-C A + B II 问题的详细解题思路和测试数据。该问题要求计算两个大整数的和,并输出结果。我们将深入探讨如何处理大整数运算,确保在给定的时间和内存限制下正确求解。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • 本文详细介绍了网络存储技术的基本概念、分类及应用场景。通过分析直连式存储(DAS)、网络附加存储(NAS)和存储区域网络(SAN)的特点,帮助读者理解不同存储方式的优势与局限性。 ... [详细]
  • C语言标准及其GCC编译器版本
    编程语言的发展离不开持续的维护和更新。本文将探讨C语言的标准演变以及GCC编译器如何支持这些标准,确保其与时俱进,满足现代开发需求。 ... [详细]
  • 开发笔记:9.八大排序
    开发笔记:9.八大排序 ... [详细]
  • 纵坐标|据点_菜菜的sklearn课堂笔记支持向量机线性SVM决策过程的可视化
    纵坐标|据点_菜菜的sklearn课堂笔记支持向量机线性SVM决策过程的可视化 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
author-avatar
手机用户2502916567
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有