热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

学习笔记17:Opencv处理调整图片亮度和对比度

一、理论基础在数学中我们学过线性理论,在图像亮度和对比度调节中同样适用,看下面这个公式:在图像像素中其中:参数f(x)表示源图像像素。参数g(x)表示输出图像像素。
一、理论基础

在数学中我们学过线性理论,在图像亮度和对比度调节中同样适用,看下面这个公式:

在图像像素中其中:

  • 参数f(x)表示源图像像素。
  • 参数g(x) 表示输出图像像素。
  • 参数a(需要满足a>0)被称为增益(gain),常常被用来控制图像的对比度。
  • 参数b通常被称为偏置(bias),常常被用来控制图像的亮度。

二、获取图像像素

在opencv中图像数据是存放在Mat数据类型中,我们知道一个像素有rgb构成,所以Mat是个三维数组,一下就是简单的获取mat中图像像素。

//三个for循环,执行运算 new_image(i,j) =a*image(i,j) + b
       for(int y = 0; y  )
       {
              for(int x = 0; x  )
              {
                     for(int c = 0; c <3; c++ )
                     {
                            new_image.at(y,x)[c]= saturate_cast( (g_nContrastValue*0.01)*(image.at(y,x)[c] ) + g_nBrightValue );
                     }
              }
       }

上述代码中image.at(y,x)[c] 其中,y是像素所在的行, x是像素所在的列, c是R、G、B(对应0、1、2)其中之一。

saturate_cast为了安全转换,运算结果可能超出像素取值范围(溢出),还可能是非整数(如果是浮点数的话),用saturate_cast对结果进行转换,以确保它为有效值。

效果图:

 

三、实例
#include 
#include 
#include "opencv2/imgproc/imgproc.hpp"

using namespace std;
using namespace cv;

static void ContrastAndBright(int, void *);
int g_nContrastValue; //对比度值
int g_nBrightValue;  //亮度值
Mat g_srcImage, g_dstImage;

int main()
{
    // 读入用户提供的图像
    g_srcImage = imread("0004.bmp");

    g_dstImage = Mat::zeros(g_srcImage.size(), g_srcImage.type());

    //设定对比度和亮度的初值
    g_nCOntrastValue= 80;
    g_nBrightValue = 80;

    //创建窗口
    namedWindow("【效果图窗口】", 1);

    //创建轨迹条
    createTrackbar("对比度:", "【效果图窗口】", &g_nContrastValue, 300, ContrastAndBright);
    createTrackbar("亮   度:", "【效果图窗口】", &g_nBrightValue, 200, ContrastAndBright);

    //调用回调函数
    ContrastAndBright(g_nContrastValue, 0);
    ContrastAndBright(g_nBrightValue, 0);

    waitKey(0);
    //输出一些帮助信息
    return 0;
}

//-----------------------------【ContrastAndBright( )函数】------------------------------------
//    描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{
    // 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
    for (int y = 0; y )
    {
        for (int x = 0; x )
        {
            for (int c = 0; c <3; c++)
            {
                g_dstImage.at(y, x)[c] = saturate_cast((g_nContrastValue*0.01)*(g_srcImage.at(y, x)[c]) + g_nBrightValue);
            }
        }
    }
    // 显示图像
    imshow("【原始图窗口】", g_srcImage);
    imshow("【效果图窗口】", g_dstImage);
}

注意:

saturate_cast:

功能:防止数据溢出,因为无论是加是减,乘除,都会超出一个像素灰度值的范围(0~255)。所以,所以当运算完之后,结果为负,则转为0,结果超出255,则为255。

四、改进

这样已经完成了更改亮度和对比度的需求,但是用for循环执行效率有点低,图像处理起来也不是特别流畅,opencv给出了非常合适的函数。

 

函数原型
void Mat::convertTo( Mat& m, int rtype, double alpha=1, double beta=0 )const;
 
输入参数:
m  目标矩阵。如果m的大小与原矩阵不一样,或者数据类型与参数不匹配,那么在函数convertTo内部会先给m重新分配空间。
rtype 指定从原矩阵进行转换后的数据类型,即目标矩阵m的数据类型。当然,矩阵m的通道数应该与原矩阵一样的。如果rtype是负数,那么m矩阵的数据类型应该与原矩阵一样。
alpha 缩放因子。默认值是1。即把原矩阵中的每一个元素都乘以alpha。
beta 增量。默认值是0。即把原矩阵中的每一个元素都乘以alpha,再加上beta。

功能
把一个矩阵从一种数据类型转换到另一种数据类型,同时可以带上缩放因子和增量,公式如下:
m(x,y)=saturate_cast(alpha*(*this)(x,y)+beta);
由于有数据类型的转换,所以需要用saturate_cast来处理数据的溢出。
 
所以上述代码可以写为,通过简单拉动进度条可以看出这个速度上提升比较大
#include 
#include 
#include "opencv2/imgproc/imgproc.hpp"

using namespace std;
using namespace cv;

static void ContrastAndBright(int, void *);
int g_nContrastValue; //对比度值
int g_nBrightValue;  //亮度值
Mat g_srcImage, g_dstImage;

int main()
{
    // 读入用户提供的图像
    g_srcImage = imread("0004.bmp");

    g_dstImage = Mat::zeros(g_srcImage.size(), g_srcImage.type());

    //设定对比度和亮度的初值
    g_nCOntrastValue= 80;
    g_nBrightValue = 80;

    //创建窗口
    namedWindow("【效果图窗口】", 1);

    //创建轨迹条
    createTrackbar("对比度:", "【效果图窗口】", &g_nContrastValue, 300, ContrastAndBright);
    createTrackbar("亮   度:", "【效果图窗口】", &g_nBrightValue, 200, ContrastAndBright);

    //调用回调函数
    ContrastAndBright(g_nContrastValue, 0);
    ContrastAndBright(g_nBrightValue, 0);

    waitKey(0);
    //输出一些帮助信息
    return 0;
}

//-----------------------------【ContrastAndBright( )函数】------------------------------------
//    描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{
    // 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
    //for (int y = 0; y //{
    //    for (int x = 0; x //    {
    //        for (int c = 0; c <3; c++)
    //        {
    //            g_dstImage.at(y, x)[c] = saturate_cast((g_nContrastValue*0.01)*(g_srcImage.at(y, x)[c]) + g_nBrightValue);
    //        }
    //    }
    //}
    g_srcImage.convertTo(g_dstImage, -1, g_nContrastValue*0.01, g_nBrightValue);
    // 显示图像
    imshow("【原始图窗口】", g_srcImage);
    imshow("【效果图窗口】", g_dstImage);
}

 


推荐阅读
  • 在高并发需求的C++项目中,我们最初选择了JsonCpp进行JSON解析和序列化。然而,在处理大数据量时,JsonCpp频繁抛出异常,尤其是在多线程环境下问题更为突出。通过分析发现,旧版本的JsonCpp存在多线程安全性和性能瓶颈。经过评估,我们最终选择了RapidJSON作为替代方案,并实现了显著的性能提升。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 本题来自WC2014,题目编号为BZOJ3435、洛谷P3920和UOJ55。该问题描述了一棵不断生长的带权树及其节点上小精灵之间的友谊关系,要求实时计算每次新增节点后树上所有可能的朋友对数。 ... [详细]
  • JavaScript中的数组是数据集合的核心结构之一,内置了多种实用的方法。掌握这些方法不仅能提高开发效率,还能显著提升代码的质量和可读性。本文将详细介绍数组的创建方式及常见操作方法。 ... [详细]
  • 本题要求在一组数中反复取出两个数相加,并将结果放回数组中,最终求出最小的总加法代价。这是一个经典的哈夫曼编码问题,利用贪心算法可以有效地解决。 ... [详细]
  • 本文深入探讨了UNIX/Linux系统中的进程间通信(IPC)机制,包括消息传递、同步和共享内存等。详细介绍了管道(Pipe)、有名管道(FIFO)、Posix和System V消息队列、互斥锁与条件变量、读写锁、信号量以及共享内存的使用方法和应用场景。 ... [详细]
  • PHP 实现多级树形结构:构建无限层级分类系统
    在众多管理系统中,如菜单、分类和部门等模块,通常需要处理层级结构。为了高效管理和展示这些层级数据,本文将介绍如何使用 PHP 实现多级树形结构,并提供代码示例以帮助开发者轻松实现无限分级。 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 深入解析Spring启动过程
    本文详细介绍了Spring框架的启动流程,帮助开发者理解其内部机制。通过具体示例和代码片段,解释了Bean定义、工厂类、读取器以及条件评估等关键概念,使读者能够更全面地掌握Spring的初始化过程。 ... [详细]
  • 本章详细介绍SP框架中的数据操作方法,包括数据查找、记录查询、新增、删除、更新、计数及字段增减等核心功能。通过具体示例和详细解析,帮助开发者更好地理解和使用这些方法。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • Linux环境下进程间通信:深入解析信号机制
    本文详细探讨了Linux系统中信号的生命周期,从信号生成到处理函数执行完毕的全过程,并介绍了信号编程中的注意事项和常见应用实例。通过分析信号在进程中的注册、注销及处理过程,帮助读者理解如何高效利用信号进行进程间通信。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 主调|大侠_重温C++ ... [详细]
author-avatar
薄雨如烟
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有