热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

消息中间件kafka简介

业界对于消息的传递有多种方案和产品,本文就比较有代表性的两个MQ(rabbitMQ,kafka)进行阐述和做简单的对比,在应用场景方面,R

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeG1oLXN4aC0xMzE0,size_20,color_FFFFFF,t_70,g_se,x_16业界对于消息的传递有多种方案和产品,本文就比较有代表性的两个MQ(rabbitMQ,kafka)进行阐述和做简单的对比,

 

 

在应用场景方面,

 

RabbitMQ,遵循AMQP协议,由内在高并发的erlanng语言开发,用在实时的对可靠性要求比较高的消息传递上。

 

kafka是Linkedin于2010年12月份开源的消息发布订阅系统,它主要用于处理活跃的流式数据,大数据量的数据处理上。

 

1)在架构模型方面,

 

RabbitMQ遵循AMQP协议,RabbitMQ的broker由Exchange,Binding,queue组成,其中exchange和binding组成了消息的路由键;客户端Producer通过连接channel和server进行通信,Consumer从queue获取消息进行消费(长连接,queue有消息会推送到consumer端,consumer循环从输入流读取数据)。rabbitMQ以broker为中心;有消息的确认机制。

 

kafka遵从一般的MQ结构,producer,broker,consumer,以consumer为中心,消息的消费信息保存的客户端consumer上,consumer根据消费的点,从broker上批量pull数据;无消息确认机制。

 

2)在吞吐量,

 

kafka具有高的吞吐量,内部采用消息的批量处理,zero-copy机制,数据的存储和获取是本地磁盘顺序批量操作,具有O(1)的复杂度,消息处理的效率很高。

 

rabbitMQ在吞吐量方面稍逊于kafka,他们的出发点不一样,rabbitMQ支持对消息的可靠的传递,支持事务,不支持批量的操作;基于存储的可靠性的要求存储可以采用内存或者硬盘。

 

3)在可用性方面,

 

rabbitMQ支持miror的queue,主queue失效,miror queue接管。

 

kafka的broker支持主备模式。

 

4)在集群负载均衡方面,

 

kafka采用zookeeper对集群中的broker、consumer进行管理,可以注册topic到zookeeper上;通过zookeeper的协调机制,producer保存对应topic的broker信息,可以随机或者轮询发送到broker上;并且producer可以基于语义指定分片,消息发送到broker的某分片上。

 

rabbitMQ的负载均衡需要单独的loadbalancer进行支持。

 

原文:http://wbj0110.iteye.com/blog/1974988

 

收集的rabbitmq资料如下:

 

http://jzhihui.iteye.com/category/195005

 

http://lynnkong.iteye.com/blog/1699684

 

http://blog.csdn.net/anzhsoft/article/details/19607841

 

http://ybbct.iteye.com/blog/1562326

 

 

 

Kafka 对比 ActiveMQ

 

 

Kafka 是LinkedIn 开发的一个高性能、分布式的消息系统,广泛用于日志收集、流式数据处理、在线和离线消息分发等场景。虽然不是作为传统的MQ来设计,在大部分情况,Kafaka 也可以代替原先ActiveMQ 等传统的消息系统。

 

Kafka 将消息流按Topic 组织,保存消息的服务器称为Broker,消费者可以订阅一个或者多个Topic。为了均衡负载,一个Topic 的消息又可以划分到多个分区(Partition),分区越多,Kafka并行能力和吞吐量越高。

 

Kafka 集群需要zookeeper 支持来实现集群,最新的kafka 发行包中已经包含了zookeeper,部署的时候可以在一台服务器上同时启动一个zookeeper Server 和 一个Kafka Server,也可以使用已有的其他zookeeper集群。

 

和传统的MQ不同,消费者需要自己保留一个offset,从kafka 获取消息时,只拉去当前offset 以后的消息。Kafka 的scala/java 版的client 已经实现了这部分的逻辑,将offset 保存到zookeeper 上。每个消费者可以选择一个id,同样id 的消费者对于同一条消息只会收到一次。一个Topic 的消费者如果都使用相同的id,就是传统的 Queue;如果每个消费者都使用不同的id, 就是传统的pub-sub.

 

  ActiveMQ和Kafka,前者完全实现了JMS的规范,后者看上去有一些“野路子”,并没有纠结于JMS规范,剑走偏锋的设计了另一套吞吐非常高的分布式发布-订阅消息系统,目前非常流行。接下来我们结合三个点(消息安全性,服务器的稳定性容错性以及吞吐量)来分别谈谈这两个消息中间件。今天我们谈Kafka,ActiveMQ的文章在此。

 

  01 性能怪兽Kafka

  Kafka是LinkedIn开源的分布式发布-订阅消息系统,目前归属于Apache定级项目。”Apache Kafka is publish-subscribe messaging rethought as a distributed commit log.”,官网首页的一句话高度概括其职责。Kafka并没有遵守JMS规范,他只用文件系统来管理消息的生命周期。Kafka的设计目标是:

(1)以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能。

(2)高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输。

(3)支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。

(4)同时支持离线数据处理和实时数据处理。

(5)Scale out:支持在线水平扩展。

  所以,不像AMQ,Kafka从设计开始极为高可用为目的,天然HA。broker支持集群,消息亦支持负载均衡,还有副本机制。同样,Kafka也是使用Zookeeper管理集群节点信息,包括consumer的消费信息也是保存在zk中,下面我们分话题来谈:

1)消息的安全性

Kafka集群中的Leader负责某一topic的某一partition的消息的读写,理论上consumer和producer只与该Leader 节点打交道,一个集群里的某一broker即是Leader的同时也可以担当某一partition的follower,即Replica。Kafka分配Replica的算法如下:

(1)将所有Broker(假设共n个Broker)和待分配的Partition排序

(2)将第i个Partition分配到第(i mod n)个Broker上

(3)将第i个Partition的第j个Replica分配到第((i + j) mode n)个Broker上

同时,Kafka与Replica既非同步也不是严格意义上的异步。一个典型的Kafka发送-消费消息的过程如下:首先首先Producer消息发送给某Topic的某Partition的Leader,Leader先是将消息写入本地Log,同时follower(如果落后过多将会被踢出出 Replica列表)从Leader上pull消息,并且在未写入log的同时即向Leader发送ACK的反馈,所以对于某一条已经算作commit的消息来讲,在某一时刻,其存在于Leader的log中,以及Replica的内存中。这可以算作一个危险的情况(听起来吓人),因为如果此时集群挂了这条消息就算丢失了,但结合producer的属性(request.required.acks=2 当所有follower都收到消息后返回ack)可以保证在绝大多数情况下消息的安全性。当消息算作commit的时候才会暴露给consumer,并保证at-least-once的投递原则。

2)服务的稳定容错性

前面提到过,Kafka天然支持HA,整个leader/follower机制通过zookeeper调度,它在所有broker中选出一个 controller,所有Partition的Leader选举都由controller决定,同时controller也负责增删Topic以及 Replica的重新分配。如果Leader挂了,集群将在ISR(in-sync replicas)中选出新的Leader,选举基本原则是:新的Leader必须拥有原来的Leader commit过的所有消息。假如所有的follower都挂了,Kafka会选择第一个“活”过来的Replica(不一定是ISR中的)作为 Leader,因为如果此时等待ISR中的Replica是有风险的,假如所有的ISR都无法“活”,那此partition将会变成不可用。

3) 吞吐量

Leader节点负责某一topic(可以分成多个partition)的某一partition的消息的读写,任何发布到此partition的消息都会被直接追加到log文件的尾部,因为每条消息都被append到该partition中,是顺序写磁盘,因此效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证),同时通过合理的partition,消息可以均匀的分布在不同的partition里面。 Kafka基于时间或者partition的大小来删除消息,同时broker是无状态的,consumer的消费状态(offset)是由 consumer自己控制的(每一个consumer实例只会消费某一个或多个特定partition的数据,而某个partition的数据只会被某一个特定的consumer实例所消费),也不需要broker通过锁机制去控制消息的消费,所以吞吐量惊人,这也是Kafka吸引人的地方。

最后说下由于zookeeper引起的脑裂(Split Brain)问题:每个consumer分别单独通过Zookeeper判断哪些partition down了,那么不同consumer从Zookeeper“看”到的view就可能不一样,这就会造成错误的reblance尝试。而且有可能所有的 consumer都认为rebalance已经完成了,但实际上可能并非如此。

 

 

 

如果在MQ的场景下,将Kafka 和 ActiveMQ 相比:

Kafka 的优点

分布式可高可扩展。Kafka 集群可以透明的扩展,增加新的服务器进集群。

高性能。Kafka 的性能大大超过传统的ActiveMQ、RabbitMQ等MQ 实现,尤其是Kafka 还支持batch 操作。下图是linkedin 的消费者性能压测结果:

 

 

容错。Kafka每个Partition的数据都会复制到几台服务器上。当某个Broker故障失效时,ZooKeeper服务将通知生产者和消费者,生产者和消费者转而使用其它Broker。

Kafka 的不利

重复消息。Kafka 只保证每个消息至少会送达一次,虽然几率很小,但一条消息有可能会被送达多次。 

消息乱序。虽然一个Partition 内部的消息是保证有序的,但是如果一个Topic 有多个Partition,Partition 之间的消息送达不保证有序。 

复杂性。Kafka需要zookeeper 集群的支持,Topic通常需要人工来创建,部署和维护较一般消息队列成本更高


推荐阅读
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • 本文深入探讨了IO复用技术的原理与实现,重点分析了其在解决C10K问题中的关键作用。IO复用技术允许单个进程同时管理多个IO对象,如文件、套接字和管道等,通过系统调用如`select`、`poll`和`epoll`,高效地处理大量并发连接。文章详细介绍了这些技术的工作机制,并结合实际案例,展示了它们在高并发场景下的应用效果。 ... [详细]
  • 本文提供了 RabbitMQ 3.7 的快速上手指南,详细介绍了环境搭建、生产者和消费者的配置与使用。通过官方教程的指引,读者可以轻松完成初步测试和实践,快速掌握 RabbitMQ 的核心功能和基本操作。 ... [详细]
  • IIS 7及7.5版本中应用程序池的最佳配置策略与实践
    在IIS 7及7.5版本中,优化应用程序池的配置是提升Web站点性能的关键步骤。具体操作包括:首先定位到目标Web站点的应用程序池,然后通过“应用程序池”菜单找到对应的池,右键选择“高级设置”。在一般优化方案中,建议调整以下几个关键参数:1. **基本设置**: - **队列长度**:默认值为1000,可根据实际需求调整队列长度,以提高处理请求的能力。此外,还可以进一步优化其他参数,如处理器使用限制、回收策略等,以确保应用程序池的高效运行。这些优化措施有助于提升系统的稳定性和响应速度。 ... [详细]
  • ZeroMQ在云计算环境下的高效消息传递库第四章学习心得
    本章节深入探讨了ZeroMQ在云计算环境中的高效消息传递机制,涵盖客户端请求-响应模式、最近最少使用(LRU)队列、心跳检测、面向服务的队列、基于磁盘的离线队列以及主从备份服务等关键技术。此外,还介绍了无中间件的请求-响应架构,强调了这些技术在提升系统性能和可靠性方面的应用价值。个人理解方面,ZeroMQ通过这些机制有效解决了分布式系统中常见的通信延迟和数据一致性问题。 ... [详细]
  • Nginx入门指南:从零开始掌握基础配置与优化技巧
    Nginx入门指南:从零开始掌握基础配置与优化技巧 ... [详细]
  • HTTP协议作为互联网通信的基础,其重要性不言而喻。相比JDK自带的URLConnection,HttpClient不仅提升了易用性和灵活性,还在性能、稳定性和安全性方面进行了显著优化。本文将深入解析HttpClient的使用方法与技巧,帮助开发者更好地掌握这一强大的工具。 ... [详细]
  • 本文深入探讨了Spring Cloud Eureka在企业级应用中的高级使用场景及优化策略。首先,介绍了Eureka的安全配置,确保服务注册与发现过程的安全性。接着,分析了Eureka的健康检查机制,提高系统的稳定性和可靠性。随后,详细讨论了Eureka的各项参数调优技巧,以提升性能和响应速度。最后,阐述了如何实现Eureka的高可用性部署,保障服务的连续性和可用性。通过这些内容,开发者可以更好地理解和运用Eureka,提升微服务架构的整体效能。 ... [详细]
  • 优化后的标题:PHP分布式高并发秒杀系统设计与实现
    PHPSeckill是一个基于PHP、Lua和Redis构建的高效分布式秒杀系统。该项目利用php_apcu扩展优化性能,实现了高并发环境下的秒杀功能。系统设计充分考虑了分布式架构的可扩展性和稳定性,适用于大规模用户同时访问的场景。项目代码已开源,可在Gitee平台上获取。 ... [详细]
  • 本文深入探讨了 Spring Cloud 微服务架构中 Gateway 组件的应用,详细介绍了其在实现高效请求路由与过滤方面的关键作用。文章首先从基本配置入手,逐步讲解了如何通过静态路由和动态路由实现灵活的服务访问控制。此外,还特别介绍了如何配置 Gateway 以自动从 Nacos 服务注册中心拉取服务列表,进一步提升系统的可维护性和扩展性。 ... [详细]
  • 在Python 3环境中,当无法连接互联网时,可以通过下载离线模块包来实现模块的安装。具体步骤包括:首先从PyPI网站下载所需的模块包,然后将其传输到目标环境,并使用`pip install`命令进行本地安装。此方法不仅适用于单个模块,还支持依赖项的批量安装,确保开发环境的完整性和一致性。 ... [详细]
  • 前言: 网上搭建k8s的文章很多,但很多都无法按其说明在阿里云ecs服务器成功搭建,所以我就花了些时间基于自己成功搭建k8s的步骤写了个操作手册,希望对想搭建k8s环境的盆友有所帮 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • Go语言实现Redis客户端与服务器的交互机制深入解析
    在前文对Godis v1.0版本的基础功能进行了详细介绍后,本文将重点探讨如何实现客户端与服务器之间的交互机制。通过具体代码实现,使客户端与服务器能够顺利通信,赋予项目实际运行的能力。本文将详细解析Go语言在实现这一过程中的关键技术和实现细节,帮助读者深入了解Redis客户端与服务器的交互原理。 ... [详细]
  • 2019年后蚂蚁集团与拼多多面试经验详述与深度剖析
    2019年后蚂蚁集团与拼多多面试经验详述与深度剖析 ... [详细]
author-avatar
航模特异_831
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有