热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

详解二叉查找树算法的实现

参考文献:《数据结构(C语言版)》严蔚敏吴伟民编著开发平台:Ubuntu11.04编译器:gccversion4.5.2(UbuntuLin

    参考文献: 《数据结构(C语言版)》  严蔚敏 吴伟民 编著

 

    开发平台:Ubuntu11.04

    编译器:gcc version4.5.2 (Ubuntu/Linaro 4.5.2-8ubuntu4)

 

    树(Tree)是n(n≥0)个结点的有限集。在任意一棵非空树中:(1)有且仅有一个特定的被称为根(Root)的结点;(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。

    结点拥有的子树数称为结点的度(Degree)。度为0的结点称为叶子(Leaf)或终端结点。度不为0的结点称为非终端结点或分支结点。

    树的度是树内各结点的度的最大值。

    结点的子树的根称为该结点的孩子(Child),相应地,该结点称为孩子的双亲(Parent)。

    结点的层次(Level)是从根结点开始计算起,根为第一层,根的孩子为第二层,依次类推。树中结点的最大层次称为树的深度(Depth)或高度。

    如果将树中结点的各子树看成从左至右是有次序的(即不能互换),则称该树为有序树,否则称为无序树。

    1、二叉树

    二叉树(Binary Tree)的特点是每个结点至多具有两棵子树(即在二叉树中不存在度大于2的结点),并且子树之间有左右之分。

    二叉树的性质:

    (1)、在二叉树的第i层上至多有2i-1个结点(i≥1)。

    (2)、深度为k的二叉树至多有2k-1个结点(k≥1)。

    (3)、对任何一棵二叉树,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

    一棵深度为k且有2k-1个结点的二叉树称为满二叉树。

    可以对满二叉树的结点进行连续编号,约定编号从根结点起,自上而下,自左至右,则由此可引出完全二叉树的定义。深度为k且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为完全二叉树。

 

    (4)、具有n个结点的完全二叉树的深度为不大于log2n的最大整数加1。

    (5)、如果对一棵有n个结点的完全二叉树的结点按层序编号(从第1层到最后一层,每层从左到右),则对任一结点i(1≤i≤n),有

    a、如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点x(其中x是不大于i/2的最大整数)。

    b、如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2i。

    c、如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。

    二叉树的链式存储:

    链式二叉树中的每个结点至少需要包含三个域,数据域和左、右指针域。

 

    二叉树的遍历:

    假如以L、D、R分别表示遍历左子树、访问根结点和遍历右子树,则可有DLR、DRL、LRD、LDR、RLD、RDL这六种遍历二叉树的方案。若限定先左后右,则只有三种方案,分别称之为先(根)序遍历、中(根)序遍历和后(根)序遍历,它们以访问根结点的次序来区分。

    2、二叉查找树

    二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree)或者是一棵空树,或者是具有下列性质的二叉树:

    (1)、若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值;

    (2)、若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值;

    (3)、它的左、右子树也分别为二叉查找树。

    3、二叉查找树的基本运算 

/* bst - binary search/sort tree 
* by Richard Tang
*/
#include
#include

typedef int data_type;

typedef struct bst_node {
data_type data;
struct bst_node *lchild, *rchild;
}bst_t, *bst_p;

    (1)、插入

    在二叉查找树中插入新结点,要保证插入新结点后仍能满足二叉查找树的性质。例子中的插入过程如下:

    a、若二叉查找树root为空,则使新结点为根;

    b、若二叉查找树root不为空,则通过search_bst_for_insert函数寻找插入点并返回它的地址(若新结点中的关键字已经存在,则返回空指针);

    c、若新结点的关键字小于插入点的关键字,则将新结点插入到插入点的左子树中,大于则插入到插入点的右子树中。 

static bst_p search_bst_for_insert(bst_p *root, data_type key)
{
bst_p s, p = *root;

while (p) {
s = p;

if (p->data == key)
return NULL;

p = (key data) ? p->lchild : p->rchild;
}

return s;
}

void insert_bst_node(bst_p *root, data_type data)
{
bst_p s, p;

s = malloc(sizeof(struct bst_node));
if (!s)
perror("Allocate dynamic memory");

s -> data = data;
s -> lchild = s -> rchild = NULL;

if (*root == NULL)
*root = s;
else {
p = search_bst_for_insert(root, data);
if (p == NULL) {
fprintf(stderr, "The %d already exists.\n", data);
free(s);
return;
}

if (data data)
p->lchild = s;
else
p->rchild = s;
}
}

    (2)、遍历 

static int print(data_type data)
{
printf("%d ", data);

return 1;
}

int pre_order_traverse(bst_p root, int (*visit)(data_type data))
{
if (root) {
if (visit(root->data))
if (pre_order_traverse(root->lchild, visit))
if (pre_order_traverse(root->rchild, visit))
return 1;
return 0;
}
else
return 1;
}

int post_order_traverse(bst_p root, int (*visit)(data_type data))
{
if (root) {
if (post_order_traverse(root->lchild, visit))
if (visit(root->data))
if (post_order_traverse(root->rchild, visit))
return 1;
return 0;
}
else
return 1;
}

    中序遍历二叉查找树可得到一个关键字的有序序列。

    (3)、删除

    删除某个结点后依然要保持二叉查找树的特性。例子中的删除过程如下:

    a、若删除点是叶子结点,则设置其双亲结点的指针为空。

    b、若删除点只有左子树,或只有右子树,则设置其双亲结点的指针指向左子树或右子树。

    c、若删除点的左右子树均不为空,则:

    1)、查询删除点的右子树的左子树是否为空,若为空,则把删除点的左子树设为删除点的右子树的左子树。

 

    2)、若不为空,则继续查询左子树,直到找到最底层的左子树为止。

 

void delete_bst_node(bst_p *root, data_type data)
{
bst_p p = *root, parent, s;

if (!p) {
fprintf(stderr, "Not found %d.\n", data);
return;
}

if (p->data == data) {
/* It's a leaf node */
if (!p->rchild && !p->lchild) {
*root = NULL;
free(p);
}
/* the right child is NULL */
else if (!p->rchild) {
*root = p->lchild;
free(p);
}
/* the left child is NULL */
else if (!p->lchild) {
*root = p->rchild;
free(p);
}
/* the node has both children */
else {
s = p->rchild;
/* the s without left child */
if (!s->lchild)
s->lchild = p->lchild;
/* the s have left child */
else {
/* find the smallest node in the left subtree of s */
while (s->lchild) {
/* record the parent node of s */
parent = s;
s = s->lchild;
}
parent->lchild = s->rchild;
s->lchild = p->lchild;
s->rchild = p->rchild;
}
*root = s;
free(p);
}
}
else if (data > p->data) {
delete_bst_node(&(p->rchild), data);
}
else if (data data) {
delete_bst_node(&(p->lchild), data);
}
}

    4、二叉查找树的查找分析

    同样的关键字,以不同的插入顺序,会产生不同形态的二叉查找树。 

int main(int argc, char *argv[])
{
int i, num;
bst_p root = NULL;

if (argc <2) {
fprintf(stderr, "Usage: %s num\n", argv[0]);
exit(-1);
}

num = atoi(argv[1]);
data_type arr[num];
printf("Please enter %d integers:\n", num);
for (i = 0; i scanf("%d", &arr[i]);
insert_bst_node(&root, arr[i]);
}

printf("\npre order traverse: ");
pre_order_traverse(root, print);
printf("\npost order traverse: ");
post_order_traverse(root, print);
printf("\n");

delete_bst_node(&root, 45);

printf("\npre order traverse: ");
pre_order_traverse(root, print);
printf("\npost order traverse: ");
post_order_traverse(root, print);
printf("\n");

return 0;
}

    运行两次,以不同的顺序输入相同的六个关键字:

     

    根据前序遍历的结果可得到两次运行所产生的二叉查找树的形态并不相同,如下图:

 


推荐阅读
  • 搭建Jenkins、Ant与TestNG集成环境
    本文详细介绍了如何在Ubuntu 16.04系统上配置Jenkins、Ant和TestNG的集成开发环境,涵盖从安装到配置的具体步骤,并提供了创建Windows Slave节点及项目构建的指南。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • 最近团队在部署DLP,作为一个技术人员对于黑盒看不到的地方还是充满了好奇心。多次咨询乙方人员DLP的算法原理是什么,他们都以商业秘密为由避而不谈,不得已只能自己查资料学习,于是有了下面的浅见。身为甲方,虽然不需要开发DLP产品,但是也有必要弄明白DLP基本的原理。俗话说工欲善其事必先利其器,只有在懂这个工具的原理之后才能更加灵活地使用这个工具,即使出现意外情况也能快速排错,越接近底层,越接近真相。根据DLP的实际用途,本文将DLP检测分为2部分,泄露关键字检测和近似重复文档检测。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 本文探讨了如何使用自增和自减运算符遍历二维数组中的元素。通过实例详细解释了指针与二维数组结合使用的正确方法,并解答了常见的错误用法。 ... [详细]
  • 查找最小值的操作是很简单的,只需要从根节点递归的遍历到左子树节点即可。当遍历到节点的左孩子为NULL时,则这个节点就是树的最小值。上面的树中,从根节点20开始,递归遍历左子 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 堆是一种常见的数据结构,广泛应用于计算机科学领域。它通常表示为一棵完全二叉树,并可通过数组实现。堆的主要特性是每个节点的值与其父节点的值之间存在特定的关系,这使得堆在优先队列和排序算法中非常有用。 ... [详细]
  • 探讨如何从数据库中按分组获取最大N条记录的方法,并分享新年祝福。本文提供多种解决方案,适用于不同数据库系统,如MySQL、Oracle等。 ... [详细]
  • 选择适合生产环境的Docker存储驱动
    本文旨在探讨如何在生产环境中选择合适的Docker存储驱动,并详细介绍不同Linux发行版下的配置方法。通过参考官方文档和兼容性矩阵,提供实用的操作指南。 ... [详细]
  • 开发笔记:9.八大排序
    开发笔记:9.八大排序 ... [详细]
  • 解析SQL查询结果的排序问题及其解决方案
    本文探讨了为什么某些SQL查询返回的数据集未能按预期顺序排列,并提供了详细的解决方案,帮助开发者理解并解决这一常见问题。 ... [详细]
  • 云计算的优势与应用场景
    本文详细探讨了云计算为企业和个人带来的多种优势,包括成本节约、安全性提升、灵活性增强等。同时介绍了云计算的五大核心特点,并结合实际案例进行分析。 ... [详细]
  • 本文介绍了一种基于选择排序思想的高效排序方法——堆排序。通过使用堆数据结构,堆排序能够在每次查找最大元素时显著提高效率。文章详细描述了堆排序的工作原理,并提供了完整的C语言代码实现。 ... [详细]
author-avatar
区小靜
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有