热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

线程之线程的一些其他方法,线程的事件,线程队列,线程池,GIL锁,协程的认识,Greenlet,Gevent

#协程greenletfromgreenletimportgreenletdefeat(name):print(%seat1%name)g2

#协程greenlet
from greenlet import greenlet

def eat(name):
    print('%s eat 1'%name)
    g2.switch('taibai')#第一次调用必须传值
    print('%s eat 2'%name)
    g2.switch()

def play(name):
    print('%s play 1'%name)
    g1.switch()
    print('%s play 2'%name)

g1=greenlet(eat)
g2=greenlet(play)

g1.switch('taibai')
# 线程的其他方法

from threading import Thread
import threading
import time
from multiprocessing import Process
import os


def work():
    import time
    time.sleep(1)
    # print('子线程',threading.get_ident()) #2608
    print(threading.current_thread().getName())  # Thread-1


if __name__ == '__main__':
    # 在主进程下开启线程
    t = Thread(target=work)
    t.start()

    # print(threading.current_thread())#主线程对象 #<_MainThread(MainThread, started 1376)>
    # print(threading.current_thread().getName()) #主线程名称 #MainThread
    # print(threading.current_thread().ident) #主线程ID #1376
    # print(threading.get_ident()) #主线程ID #1376

    time.sleep(3)
    print(
        threading.enumerate())  # 连同主线程在内有两个运行的线程,[<_MainThread(MainThread, started 13396)>, ]
    print(threading.active_count())  # 2
    print('主线程/主进程')



# 队列
import queue
#队列先进先出
q2=queue.Queue()
q2.put('frist')
q2.put('second')
q2.put('third')
print(q2.get())
print(q2.get())
print(q2.get())

#类似于栈的队列
q1=queue.LifoQueue()
q1.put(1)
q1.put(2)
q1.put(3)
print(q1.get())
print(q1.get())
print(q1.get())
# print(q1.get())#阻塞

#优先级队列
import queue
q=queue.PriorityQueue()#创建优先级队列对象
q.put((-1,'666'))
q.put((0,'999'))
q.put((3,'hahaha'))
q.put((9,'123'))
print(q.get())
print(q.get())
print(q.get())
print(q.get())

#线程池的方法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
def func(i):
    print(i)
    time.sleep(1)
    return i**2
t_pool=ThreadPoolExecutor(max_workers=4)#实例化个线程池,设置最大线程数
ret=t_pool.map(func,range(10))#map自带join,返回生成器
print(ret,[i for i in ret])


#多线程与多进程在纯计算或者io密集型的两种场景运行时间的比较
from multiprocessing import Process
from threading import Thread

def func():
    num=0
    # time.sleep(1)
    for i in range(100000000):
        num += i

if __name__ == '__main__':
    p_s_t = time.time()
    p_list = []
    for i in range(10):
        p = Process(target=func, )
        p_list.append(p)
        p.start()
    [pp.join() for pp in p_list]
    p_e_t = time.time()
    p_dif_t = p_e_t - p_s_t

    t_s_t=time.time()
    t_list = []
    for i in range(10):
        t=Thread(target=func,)
        t_list.append(t)
        t.start()
    [tt.join() for tt in t_list]
    t_e_t=time.time()
    t_dif_t=t_e_t-t_s_t

    print("多进程:", p_dif_t)
    print("多线程:",t_dif_t)
#纯计算的程序切换反而更慢
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield
        # time.sleep(1) #发现什么?只是进行了切换,但是并没有节省I/O时间
        print('处理了数据:',x)
def producer():
    '''任务2:生产数据'''
    g=consumer()
    # print('asdfasfasdf')
    next(g)  #找到了consumer函数的yield位置
    for i in range(3):
    # for i in range(10000000):
        g.send(i)  #给yield传值,然后再循环给下一个yield传值,并且多了切换的程序,比直接串行执行还多了一些步骤,导致执行效率反而更低了。
        print('发送了数据:',i)
start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer() #我在当前线程中只执行了这个函数,但是通过这个函数里面的send切换了另外一个任务
stop=time.time()

# 串行执行的方式
res=producer()
consumer(res)
stop=time.time()

print(stop-start)

  

 


推荐阅读
  • 在Python多进程编程中,`multiprocessing`模块是不可或缺的工具。本文详细探讨了该模块在多进程管理中的核心原理,并通过实际代码示例进行了深入分析。文章不仅总结了常见的多进程编程技巧,还提供了解决常见问题的实用方法,帮助读者更好地理解和应用多进程编程技术。 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • C++ 开发实战:实用技巧与经验分享
    C++ 开发实战:实用技巧与经验分享 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告
    技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告 ... [详细]
  • 本文探讨了 Java 中 Pair 类的历史与现状。虽然 Java 标准库中没有内置的 Pair 类,但社区和第三方库提供了多种实现方式,如 Apache Commons 的 Pair 类和 JavaFX 的 javafx.util.Pair 类。这些实现为需要处理成对数据的开发者提供了便利。此外,文章还讨论了为何标准库未包含 Pair 类的原因,以及在现代 Java 开发中使用 Pair 类的最佳实践。 ... [详细]
  • 本文详细介绍了如何安全地手动卸载Exchange Server 2003,以确保系统的稳定性和数据的完整性。根据微软官方支持文档(https://support.microsoft.com/kb833396/zh-cn),在进行卸载操作前,需要特别注意备份重要数据,并遵循一系列严格的步骤,以避免对现有网络环境造成不利影响。此外,文章还提供了详细的故障排除指南,帮助管理员在遇到问题时能够迅速解决,确保整个卸载过程顺利进行。 ... [详细]
  • 设计实战 | 10个Kotlin项目深度解析:首页模块开发详解
    设计实战 | 10个Kotlin项目深度解析:首页模块开发详解 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 本文详细探讨了Zebra路由软件中的线程机制及其实际应用。通过对Zebra线程模型的深入分析,揭示了其在高效处理网络路由任务中的关键作用。文章还介绍了线程同步与通信机制,以及如何通过优化线程管理提升系统性能。此外,结合具体应用场景,展示了Zebra线程机制在复杂网络环境下的优势和灵活性。 ... [详细]
  • 如何在C#中配置组合框的背景颜色? ... [详细]
  • 数字图书馆近期展出了一批精选的Linux经典著作,这些书籍虽然部分较为陈旧,但依然具有重要的参考价值。如需转载相关内容,请务必注明来源:小文论坛(http://www.xiaowenbbs.com)。 ... [详细]
  • 计算机视觉领域介绍 | 自然语言驱动的跨模态行人重识别前沿技术综述(上篇)
    本文介绍了计算机视觉领域的最新进展,特别是自然语言驱动的跨模态行人重识别技术。上篇内容详细探讨了该领域的基础理论、关键技术及当前的研究热点,为读者提供了全面的概述。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 并发编程入门:初探多任务处理技术
    并发编程入门:探索多任务处理技术并发编程是指在单个处理器上高效地管理多个任务的执行过程。其核心在于通过合理分配和协调任务,提高系统的整体性能。主要应用场景包括:1) 将复杂任务分解为多个子任务,并分配给不同的线程,实现并行处理;2) 通过同步机制确保线程间协调一致,避免资源竞争和数据不一致问题。此外,理解并发编程还涉及锁机制、线程池和异步编程等关键技术。 ... [详细]
author-avatar
zoooooz
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有