作者:宫金丹865 | 来源:互联网 | 2023-05-18 14:30
下面假如使用A[I]存的是顺序位序,而B[J]存的是倒位序。I<J的时候需要变序,I>J的时候就不用,不然就白忙活了。例如N8的时候,(红色标注表示要变序)倒位序顺序
下面假如使用A[I]存的是顺序位序,而B[J]存的是倒位序。IJ的时候就不用,不然就白忙活了。
例如 N = 8 的时候,(红色标注表示要变序)
倒位序 顺序 二进制表示 倒位序顺序
0 0 000 000
4 1 100 001
2 2 010 010
6 3 110 011
1 4 001 100
5 5 101 101
3 6 011 110
7 7 111 111
由上面的表可以看出,按自然顺序排列的二进制数,其下面一个数总是比其上面一个数大1,即下面一个数是上面一个数在最低位加1并向高位进位而得到的。而倒位序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位进位而得到。
I、J都是从0开始,若已知某个倒位序J,要求下一个倒位序数,则应先判断J的最高位是否为0,这可与k=N/2相比较,因为N/2总是等于100..的。如果k>J,则J的最高位为0,只要把该位变为1(J与k=N/2相加即可),就得到下一个倒位序数;如果K<=J,则J的最高位为1,可将最高位变为0(J与k=N/2相减即可)。然后还需判断次高位,这可与k=N\4相比较,若次高位为0,则需将它变为1(加N\4即可)其他位不变,既得到下一个倒位序数;若次高位是1,则需将它也变为0。然后再判断下一位。。。。
nv2=FFT_N/2; //变址运算,即把自然顺序变成倒位序,采用雷德算法
nm1=FFT_N-1;
for(i=0;i
{
if(i
{
t=xin[j];
xin[j]=xin[i];
xin[i]=t;
}
k=nv2; //求j的下一个倒位序
while(k<=j) //如果k<=j,表示j的最高位为1
{
j=j-k; //把最高位变成0
k=k/2; //k/2,比较次高位,依次类推,逐个比较,直到某个位为0
}
j=j+k; //把0改为1
}