热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

吴恩达神经网络和深度学习(编程作业)具有一个隐藏层的神经网络

神经网络和深度学习上一作业主目录下一作业【前言】这是第三周的编程作业以下只是主要部分的代码,需要用到的资料可以访问我的GitHub进行获取这是我的文件目录ÿ

神经网络和深度学习
上一作业主目录 下一作业


前言

这是第三周的编程作业
以下只是主要部分的代码,需要用到的资料可以访问 我的GitHub 进行获取
这是我的文件目录:
在这里插入图片描述

我是用的PyCharm,如果你没有安装相应的依赖库,请按照以下方式进行安装:
首先打开:terminal
在这里插入图片描述
输入以下命令:

pip install matplotlib

诸如此类…



one_hiddenlayer_neural_network.py文件:


import numpy as np
import matplotlib.pyplot as plt
from testCases import *
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets#%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。#训练集数据
X, Y = load_planar_dataset()
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral) #绘制散点图
# print(X[0,:]) X的第一行
# print(X[1,:]) X的第二行
# print(X) X是2行800列的数组,每一列中的第一行和第二行分别对应x和y,800列即800个样本数据
# print(Y) Y是(1,400)的行向量[[1,2,...,400]]
# print(np.squeeze(Y)) np.squeeze(Y)将消除维度1,结果是[1,2,...,400]
plt.show()
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1] # 训练集里面的数量
print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")def layer_sizes(X , Y):"""参数:X - 输入数据集,维度为(输入的数量,训练/测试的数量)Y - 标签,维度为(输出的数量,训练/测试数量)返回:n_x - 输入层的数量n_h - 隐藏层的数量n_y - 输出层的数量"""n_x = X.shape[0] #输入层n_h = 4 #,隐藏层,硬编码为4n_y = Y.shape[0] #输出层return (n_x,n_h,n_y)def initialize_parameters( n_x , n_h ,n_y):"""参数:n_x - 输入节点的数量n_h - 隐藏层节点的数量n_y - 输出层节点的数量返回:parameters - 包含参数的字典:W1 - 权重矩阵,维度为(n_h,n_x)b1 - 偏向量,维度为(n_h,1)W2 - 权重矩阵,维度为(n_y,n_h)b2 - 偏向量,维度为(n_y,1)"""np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。W1 = np.random.randn(n_h,n_x) * 0.01b1 = np.zeros(shape=(n_h, 1))W2 = np.random.randn(n_y,n_h) * 0.01b2 = np.zeros(shape=(n_y, 1))#使用断言确保我的数据格式是正确的assert(W1.shape == ( n_h , n_x ))assert(b1.shape == ( n_h , 1 ))assert(W2.shape == ( n_y , n_h ))assert(b2.shape == ( n_y , 1 ))parameters = {"W1" : W1,"b1" : b1,"W2" : W2,"b2" : b2 }return parametersdef forward_propagation( X , parameters ):"""参数:X - 维度为(n_x,m)的输入数据。parameters - 初始化函数(initialize_parameters)的输出返回:A2 - 使用sigmoid()函数计算的第二次激活后的数值cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量"""W1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]#前向传播计算A2Z1 = np.dot(W1 , X) + b1A1 = np.tanh(Z1)Z2 = np.dot(W2 , A1) + b2A2 = sigmoid(Z2)#使用断言确保我的数据格式是正确的assert(A2.shape == (1,X.shape[1]))cache = {"Z1": Z1,"A1": A1,"Z2": Z2,"A2": A2}return (A2, cache)def compute_cost(A2,Y,parameters):"""计算方程(6)中给出的交叉熵成本,参数:A2 - 使用sigmoid()函数计算的第二次激活后的数值Y - "True"标签向量,维度为(1,数量)parameters - 一个包含W1,B1,W2和B2的字典类型的变量返回:成本 - 交叉熵成本给出方程(13)"""m = Y.shape[1]# W1 = parameters["W1"]# W2 = parameters["W2"]#计算成本logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))cost = - np.sum(logprobs) / mcost = float(np.squeeze(cost))assert(isinstance(cost,float))return costdef backward_propagation(parameters,cache,X,Y):"""使用上述说明搭建反向传播函数。参数:parameters - 包含我们的参数的一个字典类型的变量。cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。X - 输入数据,维度为(2,数量)Y - “True”标签,维度为(1,数量)返回:grads - 包含W和b的导数一个字典类型的变量。"""m = X.shape[1]W1 = parameters["W1"]W2 = parameters["W2"]A1 = cache["A1"]A2 = cache["A2"]dZ2= A2 - YdW2 = (1 / m) * np.dot(dZ2, A1.T)db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))dW1 = (1 / m) * np.dot(dZ1, X.T)db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)grads = {"dW1": dW1,"db1": db1,"dW2": dW2,"db2": db2 }return gradsdef update_parameters(parameters,grads,learning_rate=1.2):"""使用上面给出的梯度下降更新规则更新参数参数:parameters - 包含参数的字典类型的变量。grads - 包含导数值的字典类型的变量。learning_rate - 学习速率返回:parameters - 包含更新参数的字典类型的变量。"""W1,W2 = parameters["W1"],parameters["W2"]b1,b2 = parameters["b1"],parameters["b2"]dW1,dW2 = grads["dW1"],grads["dW2"]db1,db2 = grads["db1"],grads["db2"]W1 = W1 - learning_rate * dW1b1 = b1 - learning_rate * db1W2 = W2 - learning_rate * dW2b2 = b2 - learning_rate * db2parameters = {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parametersdef nn_model(X,Y,n_h,num_iterations,print_cost=False):"""参数:X - 数据集,维度为(2,示例数)Y - 标签,维度为(1,示例数)n_h - 隐藏层的数量num_iterations - 梯度下降循环中的迭代次数print_cost - 如果为True,则每1000次迭代打印一次成本数值返回:parameters - 模型学习的参数,它们可以用来进行预测。"""np.random.seed(3) #指定随机种子n_x = layer_sizes(X, Y)[0]n_y = layer_sizes(X, Y)[2]parameters = initialize_parameters(n_x,n_h,n_y)W1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]for i in range(num_iterations):A2 , cache = forward_propagation(X,parameters)cost = compute_cost(A2,Y,parameters)grads = backward_propagation(parameters,cache,X,Y)parameters = update_parameters(parameters,grads,learning_rate = 0.5)if print_cost:if i%1000 == 0:print("第 ",i," 次循环,成本为:"+str(cost))return parametersdef predict(parameters,X):"""使用学习的参数,为X中的每个示例预测一个类参数:parameters - 包含参数的字典类型的变量。X - 输入数据(n_x,m)返回predictions - 我们模型预测的向量(红色:0 /蓝色:1)"""A2 , cache = forward_propagation(X,parameters)predictions = np.round(A2)return predictions#使用逻辑回归预测的准确率只有0.47,因为数据集不是线性可分的,不属于二分类的问题
# clf = sklearn.linear_model.LogisticRegressionCV()
# clf.fit(X.T,Y.T)
# plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界
# plt.title("Logistic Regression") #图标题
# plt.show()
# LR_predictions = clf.predict(X.T) #预测结果
# print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) +
# np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) +
# "% " + "(正确标记的数据点所占的百分比)")parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')plt.figure(figsize=(16, 32))
plt.show()
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):plt.subplot(5, 2, i + 1)plt.title('Hidden Layer of size %d' % n_h)parameters = nn_model(X, Y, n_h, num_iterations=5000)plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)plt.figure(figsize=(16, 32))plt.show()predictions = predict(parameters, X)accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)print ("隐藏层的节点数量: {} ,准确率: {} %".format(n_h, accuracy))


神经网络和深度学习系列笔记: 传送门


推荐阅读
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • EzPP 0.2发布,新增YAML布局渲染功能
    EzPP发布了0.2.1版本,新增了YAML布局渲染功能,可以将YAML文件渲染为图片,并且可以复用YAML作为模版,通过传递不同参数生成不同的图片。这个功能可以用于绘制Logo、封面或其他图片,让用户不需要安装或卸载Photoshop。文章还提供了一个入门例子,介绍了使用ezpp的基本渲染方法,以及如何使用canvas、text类元素、自定义字体等。 ... [详细]
  • Python已成为全球最受欢迎的编程语言之一,然而Python程序的安全运行存在一定的风险。本文介绍了Python程序安全运行需要满足的三个条件,即系统路径上的每个条目都处于安全的位置、"主脚本"所在的目录始终位于系统路径中、若python命令使用-c和-m选项,调用程序的目录也必须是安全的。同时,文章还提出了一些预防措施,如避免将下载文件夹作为当前工作目录、使用pip所在路径而不是直接使用python命令等。对于初学Python的读者来说,这些内容将有所帮助。 ... [详细]
  • 很多时候在注册一些比较重要的帐号,或者使用一些比较重要的接口的时候,需要使用到随机字符串,为了方便,我们设计这个脚本需要注意 ... [详细]
  • 零基础用Python打造Android字符串资源翻译器(五):增加图形化界面
    目录 ... [详细]
  • 1.《Python程序设计基础与应用》第1章 Python概述
    第1章Python概述1.1Python语言简介(1)Python是一门跨平台、开源、免费的解释型高级动态编程语言。(2࿰ ... [详细]
  • YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程
    本文介绍了关于人工智能、神经网络和深度学习的知识点,并提供了YOLOv7基于自己的数据集从零构建模型完整训练、推理计算的详细教程。文章还提到了郑州最低生活保障的话题。对于从事目标检测任务的人来说,YOLO是一个熟悉的模型。文章还提到了yolov4和yolov6的相关内容,以及选择模型的优化思路。 ... [详细]
  • 开源Keras Faster RCNN模型介绍及代码结构解析
    本文介绍了开源Keras Faster RCNN模型的环境需求和代码结构,包括FasterRCNN源码解析、RPN与classifier定义、data_generators.py文件的功能以及损失计算。同时提供了该模型的开源地址和安装所需的库。 ... [详细]
  • Python使用Pillow包生成验证码图片的方法
    本文介绍了使用Python中的Pillow包生成验证码图片的方法。通过随机生成数字和符号,并添加干扰象素,生成一幅验证码图片。需要配置好Python环境,并安装Pillow库。代码实现包括导入Pillow包和随机模块,定义随机生成字母、数字和字体颜色的函数。 ... [详细]
  • 本文讨论了如何使用GStreamer来删除H264格式视频文件中的中间部分,而不需要进行重编码。作者提出了使用gst_element_seek(...)函数来实现这个目标的思路,并提到遇到了一个解决不了的BUG。文章还列举了8个解决方案,希望能够得到更好的思路。 ... [详细]
  • 通过Anaconda安装tensorflow,并安装运行spyder编译器的完整教程
    本文提供了一个完整的教程,介绍了如何通过Anaconda安装tensorflow,并安装运行spyder编译器。文章详细介绍了安装Anaconda、创建tensorflow环境、安装GPU版本tensorflow、安装和运行Spyder编译器以及安装OpenCV等步骤。该教程适用于Windows 8操作系统,并提供了相关的网址供参考。通过本教程,读者可以轻松地安装和配置tensorflow环境,以及运行spyder编译器进行开发。 ... [详细]
  • 在本教程中,我们将看到如何使用FLASK制作第一个用于机器学习模型的RESTAPI。我们将从创建机器学习模型开始。然后,我们将看到使用Flask创建AP ... [详细]
  • 本人学习笔记,知识点均摘自于网络,用于学习和交流(如未注明出处,请提醒,将及时更正,谢谢)OS:我学习是为了上 ... [详细]
  • 【爬虫训练场】:分页爬虫案例设计Demo,Python Flask与MySQL的完美连接
    网站类应用,一定离不开MySQL,所以本案例将带着大家学习一下,通过Flask调用MySQL数据,并实现分页呈现。类被称作蓝图,它是一个存储操作方法的容器,Flask可以通过Blu ... [详细]
author-avatar
robable004_96978
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有