热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Windows7安装TensorflowGPU文档

安装Tensorflow-GPU文档第一步:通过Anaconda安装python从这个链接https:www.anaconda.comdownload#window

安装Tensorflow-GPU文档

第一步:通过Anaconda安装python

 

从这个链接https://www.anaconda.com/download/#windows进行Anaconda下载,您可以为不同的Python分布管理不同的环境。由于我们不再支持Python 2,因此需要Python 3。在本指南中,我们使用Python 3.6版和Anaconda 5.1版(64位或32位直接链接)。


我们建议使用默认的高级安装选项。但是,请选择适合您的具体情况的选项。

安装后,您必须打开Anaconda Navigator才能完成设置。在Windows搜索栏中,输入anaconda导航器。打开后您可以关闭AnacondaNavigator。

 

第2步:安装并激活新的Conda环境

您将创建一个新的Conda环境用于ML-Agents。这意味着您安装的所有软件包都已本地化为只有此环境。它不会影响任何其他Python或其他环境的安装。无论何时你想运行ML-Agents,你都需要激活这个Conda环境。要创建新的Conda环境,请打开一个新的Anaconda提示(搜索栏中的Anaconda提示)并输入以下命令:

conda create -n ml-agents python=3.6

您可能会被要求安装新的软件包。键入y并按回车键(确保您已连接到互联网)。您必须安装这些必需的软件包。新的Conda环境被称为ml-agents,并使用Python版本3.6。

要使用这个环境,你必须激活它。(要使用此环境将来,您可以运行相同的命令)。在同一个Anaconda提示符下,输入以下命令:

conda activate ml-agents或者不用命令行直接在anaconda打开ml-agents



可以看到ml-agents出现在最左边


第3步安装tensorflow-gpu:

这是高级用户想要使用GPU进行训练的指南。此外,您需要检查您的GPU是否兼容CUDA。请在这https://developer.nvidia.com/cuda-gpus查看Nvidia的页面。首先查看我的显卡

1)首先在桌面鼠标右键查看显卡类型


本来自己的显卡是GTX750版本太低无法装载高版本的cuda(比如cuda8.0

2)安装Nvidia CUDA工具包

从Nvidia的档案下载https://developer.nvidia.com/cuda-toolkit-archive


(温馨提示最好不要装最新版本的cuda可能最新版还不支持TensorFlow,本文作者一开始安装了最新版本的cuda9.1之后出现下面的错误)



并安装CUDA工具包。该工具包包括GPU加速库,调试和优化工具,C/C ++编译器和运行时库在安装之前,请确保关闭任何正在运行的Unity或Visual Studio实例

请注意您安装CUDA工具包的目录。在本指南中,我们安装在目录中C:\Program Files\NVIDIA GPUComputing Toolkit\CUDA\v9.0

3) 安装Nvidia cuDNN

 https://developer.nvidia.com/cudnn下载并安装cuDNN库。cuDNN是一个GPU加速的深层神经网络原语库。在您下载之前,您需要免费注册Nvidia开发者计划。

注册后,返回到cuDNN 下载页面。您可能会或可能不会被要求填写一个简短的调查。当您到达cuDNN发布的列表时,请确保您正在为在步骤1中安装的CUDA工具包下载正确的版本。


下载完cuDNN文件后,您需要将文件解压缩到CUDA工具包目录中。在cuDNN zip文件中,有三个文件夹叫binincludelib


将这三个文件夹复制到CUDA工具包对应的目录中。CUDA工具包目录位于C:\Program Files\NVIDIA GPUComputing Toolkit\CUDA\v9.0

4)设置环境变量

您将需要添加一个环境变量和两个路径变量。要设置环境变量,请输入environment variables搜索栏(可以通过点击Windows键或左下角的Windows按钮来达到此目的)。您应该看到一个名为“ 编辑系统环境变量”的选项。


从这里,点击环境变量按钮。点击New添加一个新的系统变量CUDA_HOME对于变量值,放置CUDA工具包的目录位置。在本指南中,目录位置是C:\Program Files\NVIDIA GPUComputing Toolkit\CUDA\v9.0。按OK一次。(确保你在系统变量而不是用户变量下执行此操作。


分别在环境变量窗口和系统变量到一个变量PATH,然后编辑。分别将下面两条路径各自添加到目录列表中(在添加路径是需要注意前面必须用;分号隔开

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\CUPTI\libx64

5)安装tensorflow GPU

接下来,tensorflow-gpu使用安装pip。在Conda环境ml-agents激活的Anaconda Prompt中,输入以下命令(确保已连接到互联网)

pip install tensorflow-gpu

(注:因为我已经安装完tensorflow-gpu显示成这样)

测试tensorflow是否成功

import tensorflow as tf

sess = tf.Session(cOnfig=tf.ConfigProto(log_device_placement=True))

结果显示:

查看tensorflow的类型


查看tensorflow的路径


测试tensorflow是否成功


推荐阅读
  • 本文将深入探讨 Unreal Engine 4 (UE4) 中的距离场技术,包括其原理、实现细节以及在渲染中的应用。距离场技术在现代游戏引擎中用于提高光照和阴影的效果,尤其是在处理复杂几何形状时。文章将结合具体代码示例,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 在Windows命令行中,通过Conda工具可以高效地管理和操作虚拟环境。具体步骤包括:1. 列出现有虚拟环境:`conda env list`;2. 创建新虚拟环境:`conda create --name 环境名`;3. 删除虚拟环境:`conda env remove --name 环境名`。这些命令不仅简化了环境管理流程,还提高了开发效率。此外,Conda还支持环境文件导出和导入,方便在不同机器间迁移配置。 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 在Windows环境下离线安装PyTorch GPU版时,首先需确认系统配置,例如本文作者使用的是Win8、CUDA 8.0和Python 3.6.5。用户应根据自身Python和CUDA版本,在PyTorch官网查找并下载相应的.whl文件。此外,建议检查系统环境变量设置,确保CUDA路径正确配置,以避免安装过程中可能出现的兼容性问题。 ... [详细]
  • 深入解析经典卷积神经网络及其实现代码
    深入解析经典卷积神经网络及其实现代码 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文提供了一个使用 while 循环在 Linux Shell 脚本中处理文件列表的具体示例。通过这个例子,读者可以了解如何利用 shell 脚本来批量处理文件,包括文件名的匹配和处理。 ... [详细]
  • Flutter 核心技术与混合开发模式深入解析
    本文深入探讨了 Flutter 的核心技术,特别是其混合开发模式,包括统一管理模式和三端分离模式,以及混合栈原理。通过对比不同模式的优缺点,帮助开发者选择最适合项目的混合开发策略。 ... [详细]
  • 英特尔推出第三代至强可扩展处理器及傲腾持久内存,AI性能显著提升
    英特尔在数据创新峰会上发布了第三代至强可扩展处理器和第二代傲腾持久内存,全面增强AI能力和系统性能。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • Nvidia Ansel 工具为 PC 玩家提供了便捷的高精度图像采集和分享功能。本文介绍了如何将 Ansel 插件集成到虚幻引擎 4 (UE4) 游戏中,并详细说明了其主要功能和系统要求。 ... [详细]
  • 使用虚拟机配置服务器
    本文详细介绍了如何使用虚拟机配置服务器,包括购买云服务器的操作步骤、系统默认配置以及相关注意事项。通过这些步骤,您可以高效地配置和管理您的服务器。 ... [详细]
author-avatar
大坑啊同志
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有