热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

为什么必须在主线程刷新UI

在iOS开发过程中,一直知道更新UI需要在主线程中,但也没怎么细想为什么要在主线程中,或者说为什么不能在子线程中更新UI。今天抽空自己在网上查查资料,了解一下这个问题。太长不看版:

在 iOS开发过程中,一直知道更新UI需要在主线程中,但也没怎么细想为什么要在主线程中,或者说为什么不能在子线程中更新UI。今天抽空自己在网上查查资料 ,了解一下这个问题。

太长不看版:

UIKit并不是一个线程安全的类,UI操作涉及到渲染访问各种View对象的属性,如果异步操作下会存在读写问题,而为其加锁则会耗费大量资源并拖慢运行速度。另一方面因为整个程序的起点UIApplication是在主线程进行初始化,所有的用户事件都是在主线程上进行传递(如点击、拖动),所以view只能在主线程上才能对事件进行响应。

而在渲染方面由于图像的渲染需要以60帧的刷新率在屏幕上 同时 更新,在非主线程异步化的情况下无法确定这个处理过程能够实现同步更新。在子线程中如果要对UI 进行更新,必须等到该子线程运行结束才能把UI的更新提交给渲染服务。



从UIKit线程不安全说起

UIKit这样一个庞大的框架,将其所有属性都设计为线程安全是不现实的,这可不仅仅是简单的将nonatomic改成atomic或者是加锁解锁的操作,还涉及到很多的方面:

  • 假设能够异步设置view的属性,那我们究竟是希望这些改动能够同时生效,还是按照各自runloop的进度去改变这个view的属性呢?
  • 假设UITableView在其他线程去移除了一个cell,而在另一个线程却对这个cell所在的index进行一些操作,这时候可能就会引发crash。
  • 如果在后台线程移除了一个view,这个时候runloop周期还没有完结,用户在主线程点击了这个“将要”消失的view,那么究竟该不该响应事件?在哪条线程进行响应?

所以把UIKit设计成多线程安全的会遇到这2大问题: 

  1. 开发过程会费很大的精力, 代码复杂度很大, 维护困难,
  2. 运行效率很低, 频繁加锁解锁, 

仔细思考,似乎能够多线程处理UI并没有给我们开发带来更多的便利,很容易得出一个结论: “我在一个串行队列对这些事件进行处理就可以了。” 苹果也是这样想的,所以UIKit的所有操作都要放到主线程串行执行。

在Thread-Safe Class Design一文提到:

It’s a conscious design decision from Apple’s side to not have UIKit be thread-safe. Making it thread-safe wouldn’t buy you much in terms of performance; it would in fact make many things slower. And the fact that UIKit is tied to the main thread makes it very easy to write concurrent programs and use UIKit. All you have to do is make sure that calls into UIKit are always made on the main thread.

苹果方面有意识地决定不让UIKit成为线程安全的。在性能方面,使其线程安全不会给您带来太多好处;实际上,它会使许多事情变得更慢。而且UIKit与主线程绑定的事实使得编写并发程序和使用UIKit变得非常容易。你所要做的就是确保对UIKit的调用总是在主线程上进行的。


 


好吧,那假设我们用黑魔法祝福了UIKit,这个UIKit能够完美的解决我们上面提到的问题,并能够按照开发者的想法随意展现不同的形态。那这个时候我们可以在后台线程操作UI了嘛?


很可惜,还是不行。

Runloop 与绘图循环

道理我们都懂,那这个究竟跟我们不能在后台线程操作UI有什么关系呢?

UIApplication在主线程所初始化的Runloop我们称为Main Runloop,它负责处理app存活期间的大部分事件,如用户交互等,它一直处于不断处理事件和休眠的循环之中,以确保能尽快的将用户事件传递给GPU进行渲染,使用户行为能够得到响应,画面之所以能够得到不断刷新也是因为Main Runloop在驱动着。

而每一个view的变化的修改并不是立刻变化,相反的会在当前run loop的结束的时候统一进行重绘,这样设计的目的是为了能够在一个runloop里面处理好所有需要变化的view,包括resize、hide、reposition等等,所有view的改变都能在同一时间生效,这样能够更高效的处理绘制,这个机制被称为绘图循环(View Drawing Cycle)

假设这个时候我们应用了我们的魔法UIKit,并愉快的在一条后台线程操作UI,但当我们需要对设备进行旋转并重新布局的时候,问题来了,因为各个线程之间不同步,这时候各个view修改的请求时机是零碎的,所以所有的旋转变化并不能在Main Runloop的一个runloop里面处理完,这就导致设备旋转之后有一些view正常旋转了, 而有一些view迟迟没有旋转。

另一方面,因为我们的魔法UIKit并不是在主线程,所以Main Runloop中的事件需要跨线程进行传输,这样会导致显示与用户事件并不同步。这是因为点击等事件是由系统传递给UIApplication中,并在Main Runloop中进行处理与响应,但是由于UI在后台线程中进行处理,所以显示画面跟事件响应并不同步。


好吧,那假设我天赋异禀,把整套UIApplication的机制全都重写了,也用黑魔法祝福了我的新UIApplication,这个时候它能完美的解决线程同步的问题,这个时候我可以在后台操作UI了吗?


很可惜,还是不能。

理解iOS的渲染流程

要回答这个问题,我们要先从最底层的渲染说起。

渲染系统框架

  • UIKit: 包含各种控件,负责对用户操作事件的响应,本身并不提供渲染的能力
  • Core Animation: 负责所有视图的绘制、显示与动画效果
  • OpenGL ES/mental: 提供2D与3D渲染服务
  • Core Graphics: 提供2D渲染服务
  • Graphics Hardware: 指GPU

所以在iOS中,所有视图的现实与动画本质上是由 Core Animation 负责,而不是UIKit。

Core Animation Pipeline 流水线

Core Animation的绘制是通过Core Animation Pipeline实现,它以流水线的形式进行渲染,具体分为四个步骤:

  • Commit Transaction:

    可以细分为

    • Layout: 构建视图布局如addSubview等操作
    • Display: 重载drawRect:进行时图绘制,该步骤使用CPU与内存
    • Prepare: 主要处理图像的解码与格式转换等操作
    • Commit: 将Layer递归打包并发送到Render Server
  • Render Server:

    负责渲染工作,会解析上一步Commit Transaction中提交的信息并反序列化成渲染树(render tree),随后根据layer的各种属性生成绘制指令,并在下一次VSync信号到来时调用OpenGL进行渲染。

  • GPU:

    GPU会等待显示器的VSync信号发出后才进行OpenGL渲染管线,将3D几何数据转化成2D的像素图像和光栅处理,随后进行新的一帧的渲染,并将其输出到缓冲区。

  • Dispaly:

    从缓冲区中取出画面,并输出到屏幕上。


知识补充:iOS的VSync与双缓冲机制

VSync:

VSync(vertical sync)是指垂直同步,在玩游戏的时候在设置的时候应该会看见过这个选项,这个机制能够让显卡和显示器保持在一个相同的刷新率从而避免画面撕裂。在iOS中,屏幕具有60Hz的刷新率,这意味着它每秒需要显示60张不同的图片(帧),但GPU并没有一个确定的刷新率,在某些时候GPU可能被要求更强力的数据输出来确保渲染能力,这时候他们可能比屏幕刷新率(60Hz)更快,就会导致屏幕不能完整的渲染所有GPU给他的数据,因为它不够快,屏幕的上一帧还没渲染完,下一帧就已经到来了,这就导致画面的撕裂。

这个时候我们就要引入VSync了,简单来说它就是让显卡保持他的输出速率不高于屏幕的刷新率,启用了VSync后,GPU不再会给你可怜的60Hz屏幕每秒发送100帧了,它会增加每一帧的发送间隔,确保显示器能够有充足的时间去处理每一帧。


双缓冲机制:

双缓冲机制是用于避免或减少画面闪烁的问题,在单缓冲的情况下,GPU输出了一帧画面,缓冲区就需要马上获取这个画面,并交给显示屏去显示,而这段时间GPU输出的画面就全都丢失了,因为没有缓冲区去承载这些画面,就会造成画面的闪烁。

而在双缓冲机制下有一个Back Frame Buffer和一个Front Frame Buffer,在GPU绘制完成后,它会将图像先保存到Back Frame Buffer中,操作完毕后,会调用一个交换函数,让绘制完成的Back Frame Buffer上的图像交换到Front Frame Buffer上。由于双缓冲利用了更多显存与CPU消耗时间,从而避免了画面的闪烁。


相信大家都会遇到过应用卡顿,卡顿的原因就是因为两帧的刷新时间间隔大于1/60秒(约16.67ms),导致用户感觉点击或者滑动时,界面没有及时的响应。

前面提到Core Animation Pipeline是以流水线的形式工作的,在理想的状况下我们希望它能够在1/60s内完成图层树的准备工作并提交给渲染进程,而渲染进程在下一次VSync信号到来的时候提交给GPU进行渲染,并在1/60s内完成渲染,这样就不会产生任何的卡顿。

但是由于我们使用了我们的魔法UIKit,所以我们在许多后台线程进行了UI操作,在runloop的结尾准备进行渲染的时候,不同线程提交了不同的渲染信息,于是我们就拥有了更多的绘制事务,这个时候Core Animation Pipeline会不断将信息提交,让GPU进行渲染,由于绘制事件的不同步导致了GPU渲染的不同步,可能在上一帧是需要渲染一个label消失的画面,下一帧却又需要渲染这个label改变了文字,最终导致的是界面的不同步。

另一方面,在VSync和双缓冲机制我们可以看出渲染其实是一个十分消耗系统资源的操作(占用显存与CPU),所以可能会因为大量的事务和线程之间频繁的上下文切换导致了GPU无法处理,反而影响了性能,从而导致在1/60s中无法完成图层树的提交,导致了严重的卡顿。

 


推荐阅读
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • Tomcat/Jetty为何选择扩展线程池而不是使用JDK原生线程池?
    本文探讨了Tomcat和Jetty选择扩展线程池而不是使用JDK原生线程池的原因。通过比较IO密集型任务和CPU密集型任务的特点,解释了为何Tomcat和Jetty需要扩展线程池来提高并发度和任务处理速度。同时,介绍了JDK原生线程池的工作流程。 ... [详细]
  • 本文介绍了Java高并发程序设计中线程安全的概念与synchronized关键字的使用。通过一个计数器的例子,演示了多线程同时对变量进行累加操作时可能出现的问题。最终值会小于预期的原因是因为两个线程同时对变量进行写入时,其中一个线程的结果会覆盖另一个线程的结果。为了解决这个问题,可以使用synchronized关键字来保证线程安全。 ... [详细]
  • Linux环境变量函数getenv、putenv、setenv和unsetenv详解
    本文详细解释了Linux中的环境变量函数getenv、putenv、setenv和unsetenv的用法和功能。通过使用这些函数,可以获取、设置和删除环境变量的值。同时给出了相应的函数原型、参数说明和返回值。通过示例代码演示了如何使用getenv函数获取环境变量的值,并打印出来。 ... [详细]
  • CentOS 7部署KVM虚拟化环境之一架构介绍
    本文介绍了CentOS 7部署KVM虚拟化环境的架构,详细解释了虚拟化技术的概念和原理,包括全虚拟化和半虚拟化。同时介绍了虚拟机的概念和虚拟化软件的作用。 ... [详细]
  • 本文讨论了在iOS平台中的Metal框架中,对于if语句中的判断条件的限制和处理方式。作者提到了在Metal shader中,判断条件不能写得太长太复杂,否则可能导致程序停留或没有响应。作者还分享了自己的经验,建议在CPU端进行处理,以避免出现问题。 ... [详细]
  • 本文介绍了Windows操作系统的版本及其特点,包括Windows 7系统的6个版本:Starter、Home Basic、Home Premium、Professional、Enterprise、Ultimate。Windows操作系统是微软公司研发的一套操作系统,具有人机操作性优异、支持的应用软件较多、对硬件支持良好等优点。Windows 7 Starter是功能最少的版本,缺乏Aero特效功能,没有64位支持,最初设计不能同时运行三个以上应用程序。 ... [详细]
  • 海马s5近光灯能否直接更换为H7?
    本文主要介绍了海马s5车型的近光灯是否可以直接更换为H7灯泡,并提供了完整的教程下载地址。此外,还详细讲解了DSP功能函数中的数据拷贝、数据填充和浮点数转换为定点数的相关内容。 ... [详细]
  • RouterOS 5.16软路由安装图解教程
    本文介绍了如何安装RouterOS 5.16软路由系统,包括系统要求、安装步骤和登录方式。同时提供了详细的图解教程,方便读者进行操作。 ... [详细]
  • 技嘉秀高端B450主板:不再支持第七代APU,性价比高且兼容锐龙一代和二代
    在台北电脑展上,技嘉展示了一款高端的B450主板,型号为“b450 aorus pro wi-fi”。该主板具有10+1相供电、散热片覆盖的供电区域和芯片组,以及两个m.2插槽和背部IO挡板。虽然不支持第七代APU bristol ridge,但它兼容锐龙一代和二代,且具有较高的性价比。该主板还配备了音频声卡、Wi-Fi无线网卡等功能,是一款性能出色且设计精良的主板。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 拥抱Android Design Support Library新变化(导航视图、悬浮ActionBar)
    转载请注明明桑AndroidAndroid5.0Loollipop作为Android最重要的版本之一,为我们带来了全新的界面风格和设计语言。看起来很受欢迎࿰ ... [详细]
  • 自动轮播,反转播放的ViewPagerAdapter的使用方法和效果展示
    本文介绍了如何使用自动轮播、反转播放的ViewPagerAdapter,并展示了其效果。该ViewPagerAdapter支持无限循环、触摸暂停、切换缩放等功能。同时提供了使用GIF.gif的示例和github地址。通过LoopFragmentPagerAdapter类的getActualCount、getActualItem和getActualPagerTitle方法可以实现自定义的循环效果和标题展示。 ... [详细]
  • 本文详细介绍了Java中vector的使用方法和相关知识,包括vector类的功能、构造方法和使用注意事项。通过使用vector类,可以方便地实现动态数组的功能,并且可以随意插入不同类型的对象,进行查找、插入和删除操作。这篇文章对于需要频繁进行查找、插入和删除操作的情况下,使用vector类是一个很好的选择。 ... [详细]
author-avatar
momosu1028_738_636
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有