作者:DilWilling | 来源:互联网 | 2023-09-18 17:11
本小节实际上就是用KNN、SVM、MLP、CNN识别mnist数据集,实际上这些在《web安全之机器学习入门》中都有讲过,而这些也是非常基础的应用。
一、KNN
整体设计如下
源码如下所示
def do_knn_1d(x_train, y_train,x_test, y_test):print ("KNN and 1d")clf = neighbors.KNeighborsClassifier(n_neighbors=15)print (clf)clf.fit(x_train, y_train)y_pred = clf.predict(x_test)print (metrics.accuracy_score(y_test, y_pred))
二、SVM
整体设计如下
源码如下
def do_svm_1d(x_train, y_train,x_test, y_test):print ("SVM and 1d")clf = svm.SVC(decision_function_shape='ovo')print (clf)clf.fit(x_train, y_train)y_pred = clf.predict(x_test)print (metrics.accuracy_score(y_test, y_pred))
三、MLP
整体设计如下
源码如下
def do_dnn_1d(X, Y, testX, testY ):print ("DNN and 1d")# Building deep neural networkinput_layer = tflearn.input_data(shape=[None, 784])dense1 = tflearn.fully_connected(input_layer, 64, activation='tanh',regularizer='L2', weight_decay=0.001)dropout1 = tflearn.dropout(dense1, 0.8)dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',regularizer='L2', weight_decay=0.001)dropout2 = tflearn.dropout(dense2, 0.8)softmax = tflearn.fully_connected(dropout2, 10, activation='softmax')# Regression using SGD with learning rate decay and Top-3 accuracysgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)top_k = tflearn.metrics.Top_k(3)net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,loss='categorical_crossentropy')# Trainingmodel = tflearn.DNN(net, tensorboard_verbose=0)model.fit(X, Y, n_epoch=10, validation_set=(testX, testY),show_metric=True, run_id="mnist")
四、CNN
设计如下
源码如下
def do_cnn_2d(X, Y, testX, testY ):# Building convolutional networknetwork = input_data(shape=[None, 28, 28, 1], name='input')network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")network = max_pool_2d(network, 2)network = local_response_normalization(network)network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")network = max_pool_2d(network, 2)network = local_response_normalization(network)network = fully_connected(network, 128, activation='tanh')network = dropout(network, 0.8)network = fully_connected(network, 256, activation='tanh')network = dropout(network, 0.8)network = fully_connected(network, 10, activation='softmax')network = regression(network, optimizer='adam', learning_rate=0.01,loss='categorical_crossentropy', name='target')# Trainingmodel = tflearn.DNN(network, tensorboard_verbose=0)model.fit({'input': X}, {'target': Y}, n_epoch=5,validation_set=({'input': testX}, {'target': testY}),snapshot_step=100, show_metric=True, run_id='mnist')
五、总结
识别mnist数据集较基础,深度学习的识别结果稍好。