热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

ValueError:形状必须在assign_add()中等于等级

我正在TF2中阅读t

我正在TF2中阅读tf.Variable in Tensorflow r2.0:

import tensorflow as tf
# Create a variable.
w = tf.constant([1,2,3,4],tf.float32,shape=[2,2])
# Use the variable in the graph like any Tensor.
y = tf.matmul(w,tf.constant([7,8,9,10],2]))
v= tf.Variable(w)
# The overloaded operators are available too.
z = tf.sigmoid(w + y)
tf.shape(z)
# Assign a new value to the variable with `assign()` or a related method.
v.assign(w + 1)
v.assign_add(tf.constant([1.0,21]))


  

ValueError:形状必须相等,但对于2和1
  输入形状为'AssignAddVariableOp_4'(op:'AssignAddVariableOp'):
  [],2。

还有以下原因返回假?

tf.shape(v) == tf.shape(tf.constant([1.0,21],tf.float32))

我的另一个问题是,当我们进入TF 2时,我们不应该再使用tf.Session()了吗?似乎we should never run session.run(),但API文档使用tf.compat.v1等来实现此功能。那么为什么他们在TF2文档中使用它?

任何帮助将不胜感激。

CS


正如在错误中明确指出的那样,期望assign_add上的形状为[2,2]的形状为[2,2]。
如果您尝试提供除尝试做的assign_add以外的其他张量,则会给出错误。

下面是修改后的代码,具有预期的操作形状。

import tensorflow as tf
# Create a variable.
w = tf.constant([1,2,3,4],tf.float32,shape=[2,2])
# Use the variable in the graph like any Tensor.
y = tf.matmul(w,tf.constant([7,8,9,10],2]))
v= tf.Variable(w)
# The overloaded operators are available too.
z = tf.sigmoid(w + y)
tf.shape(z)
# Assign a new value to the variable with `assign()` or a related method.
v.assign(w + 1)
print(v)
v.assign_add(tf.constant([1,2]))

v的输出:

array([[3.,5.],[7.,9.]],dtype=float32)>

现在,以下张量比较返回True

tf.shape(v) == tf.shape(tf.constant([1.0,21],tf.float32))

关于您的tf.Session()问题,在TensorFlow 2.0中,默认情况下仍启用急切执行,但是,如果您需要禁用急切执行并可以使用tf.Session,如下所示。

import tensorflow as tf
tf.compat.v1.disable_eager_execution()
hello = tf.constant('Hello,TensorFlow!')
sess = tf.compat.v1.Session()
print(sess.run(hello))

推荐阅读
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 本文介绍如何使用 Angular 6 的 HttpClient 模块来获取 HTTP 响应头,包括代码示例和常见问题的解决方案。 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • 黑马头条项目:Vue 文章详情模块与交互功能实现
    本文详细介绍了如何在黑马头条项目中配置文章详情模块的路由、获取和展示文章详情数据,以及实现关注、点赞、不喜欢和评论功能。通过这些步骤,您可以全面了解如何开发一个完整的前端文章详情页面。 ... [详细]
  • 在高并发需求的C++项目中,我们最初选择了JsonCpp进行JSON解析和序列化。然而,在处理大数据量时,JsonCpp频繁抛出异常,尤其是在多线程环境下问题更为突出。通过分析发现,旧版本的JsonCpp存在多线程安全性和性能瓶颈。经过评估,我们最终选择了RapidJSON作为替代方案,并实现了显著的性能提升。 ... [详细]
  • Python + Pytest 接口自动化测试中 Token 关联登录的实现方法
    本文将深入探讨 Python 和 Pytest 在接口自动化测试中如何实现 Token 关联登录,内容详尽、逻辑清晰,旨在帮助读者掌握这一关键技能。 ... [详细]
  • 为了解决不同服务器间共享图片的需求,我们最初考虑建立一个FTP图片服务器。然而,考虑到项目是一个简单的CMS系统,为了简化流程,团队决定探索七牛云存储的解决方案。本文将详细介绍使用七牛云存储的过程和心得。 ... [详细]
  • 深入解析 Android IPC 中的 Messenger 机制
    本文详细介绍了 Android 中基于消息传递的进程间通信(IPC)机制——Messenger。通过实例和源码分析,帮助开发者更好地理解和使用这一高效的通信工具。 ... [详细]
  • Django Token 认证详解与 HTTP 401、403 状态码的区别
    本文详细介绍了如何在 Django 中配置和使用 Token 认证,并解释了 HTTP 401 和 HTTP 403 状态码的区别。通过具体的代码示例,帮助开发者理解认证机制及权限控制。 ... [详细]
  • 软件工程课堂测试2
    要做一个简单的保存网页界面,首先用jsp写出保存界面,本次界面比较简单,首先是三个提示语,后面是三个输入框,然 ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
  • 本文深入探讨了UNIX/Linux系统中的进程间通信(IPC)机制,包括消息传递、同步和共享内存等。详细介绍了管道(Pipe)、有名管道(FIFO)、Posix和System V消息队列、互斥锁与条件变量、读写锁、信号量以及共享内存的使用方法和应用场景。 ... [详细]
  • springMVC JRS303验证 ... [详细]
  • 本文介绍了一种根据目标检测结果,从原始XML文件中提取并分析特定类别的方法。通过解析XML文件,筛选出特定类别的图像和标注信息,并保存到新的文件夹中,以便进一步分析和处理。 ... [详细]
  • 本文详细探讨了在微服务架构中,使用Feign进行远程调用时出现的请求头丢失问题,并提供了具体的解决方案。重点讨论了单线程和异步调用两种场景下的处理方法。 ... [详细]
author-avatar
手机用户2502910651
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有