热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

UNet++学习笔记(主干网络+代码)

论文1Abstract​文章提出,UNet主要有以下两大缺陷:​①网络最优的深度未知,需要通过大量的实验以及集成不同深度的网络&#x

论文


1 Abstract

​ 文章提出,UNet主要有以下两大缺陷:

​ ① 网络最优的深度未知,需要通过大量的实验以及集成不同深度的网络,效率低;

​ ② skip connection引入了不必要的限制,即限制仅在相同的尺度进行特征融合。

​ 对此,UNet++进行了以下的优化:

​ ① 利用不同深度UNet的有效集成(这些UNet共享一个编码器),通过监督学习来搜索最优深度;

​ ② 重新设计skip connection,使得解码器的子网络可以聚合不同尺度的特征,更加灵活;

​ ③ 利用剪纸技术来提高UNet++的推理速度。

image-20220305185117475


2 Introduction

​ 传统的编码器解码器结构 + skip connection结构可以很好的应用于语义分割任务,原因是:其将编码器子网中的浅层细粒度信息与解码器子网中的深层粗粒度信息进行相结合。

​ 文章的五个贡献:

​ ① UNet++内嵌了不同深度的UNet,从而不再是固定的深度结构;

​ ② 更加灵活的skip connection结构,不再是仅融合同一尺度的特征;

​ ③ 设计了一个剪枝操作加快推理速度;

​ ④ 同时训练内嵌的不同深度的UNet引发了UNet之间的协同训练,带来了更好的性能;

​ ⑤ 展现了可扩展性。


3 Backbone


3.1 Motivation

​ 实验发现,更深的UNet不一定更好,因此进行了多组的消融实验。

image-20220305194519135

​ 在UNete中,需要同时对X01,X02,X03和X04赋予损失函数,从而让内嵌的UNet可以回传梯度。在UNet+到UNet++的过程中,从短连接到长连接,更加有效地利用了多种特征。


3.2 Structure

image-20220305195509072


3.3 Deep supervision

image-20220305204527214


3.4 Model pruning

image-20220305204621494


  1. 集成模式,其中收集所有分割分支的分割结果,然后取其平均值;
  2. 剪枝模式,分割分支,其选择决定了模型修剪的程度和速度增益,例如上图。

​ 以下参考:研习U-Net - 知乎 (zhihu.com)

image-20220305211132831

image-20220305211142328

image-20220305211225422


代码

image-20220306152244682

# 基本的块网络,用于堆叠形成每一个卷积块
class VGGBlock(nn.Module):def __init__(self, in_channels, middle_channels, out_channels):super().__init__()self.relu = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)self.bn1 = nn.BatchNorm2d(middle_channels)self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)self.bn2 = nn.BatchNorm2d(out_channels)def forward(self, x):out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)return out# UNet++骨干网络
class NestedUNet(nn.Module):def __init__(self, num_classes, input_channels=3, deep_supervision=False, **kwargs):super().__init__()nb_filter = [32, 64, 128, 256, 512]self.deep_supervision = deep_supervisionself.pool = nn.MaxPool2d(2, 2)self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)# 第一斜列(左上到右下)self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])# 第二斜列self.conv0_1 = VGGBlock(nb_filter[0] * 1 + nb_filter[1], nb_filter[0], nb_filter[0])self.conv1_1 = VGGBlock(nb_filter[1] * 1 + nb_filter[2], nb_filter[1], nb_filter[1])self.conv2_1 = VGGBlock(nb_filter[2] * 1 + nb_filter[3], nb_filter[2], nb_filter[2])self.conv3_1 = VGGBlock(nb_filter[3] * 1 + nb_filter[4], nb_filter[3], nb_filter[3])# 第三斜列self.conv0_2 = VGGBlock(nb_filter[0] * 2 + nb_filter[1], nb_filter[0], nb_filter[0])self.conv1_2 = VGGBlock(nb_filter[1] * 2 + nb_filter[2], nb_filter[1], nb_filter[1])self.conv2_2 = VGGBlock(nb_filter[2] * 2 + nb_filter[3], nb_filter[2], nb_filter[2])# 第四斜列self.conv0_3 = VGGBlock(nb_filter[0] * 3 + nb_filter[1], nb_filter[0], nb_filter[0])self.conv1_3 = VGGBlock(nb_filter[1] * 3 + nb_filter[2], nb_filter[1], nb_filter[1])# 第五斜列self.conv0_4 = VGGBlock(nb_filter[0] * 4 + nb_filter[1], nb_filter[0], nb_filter[0])# 1×1卷积核if self.deep_supervision:self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)else:self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)def forward(self, x):x0_0 = self.conv0_0(x)x1_0 = self.conv1_0(self.pool(x0_0))x0_1 = self.conv0_1(torch.cat([x0_0, self.up(x1_0)], 1))x2_0 = self.conv2_0(self.pool(x1_0))x1_1 = self.conv1_1(torch.cat([x1_0, self.up(x2_0)], 1))x0_2 = self.conv0_2(torch.cat([x0_0, x0_1, self.up(x1_1)], 1))x3_0 = self.conv3_0(self.pool(x2_0))x2_1 = self.conv2_1(torch.cat([x2_0, self.up(x3_0)], 1))x1_2 = self.conv1_2(torch.cat([x1_0, x1_1, self.up(x2_1)], 1))x0_3 = self.conv0_3(torch.cat([x0_0, x0_1, x0_2, self.up(x1_2)], 1))x4_0 = self.conv4_0(self.pool(x3_0))x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1))x2_2 = self.conv2_2(torch.cat([x2_0, x2_1, self.up(x3_1)], 1))x1_3 = self.conv1_3(torch.cat([x1_0, x1_1, x1_2, self.up(x2_2)], 1))x0_4 = self.conv0_4(torch.cat([x0_0, x0_1, x0_2, x0_3, self.up(x1_3)], 1))if self.deep_supervision:output1 = self.final1(x0_1)output2 = self.final2(x0_2)output3 = self.final3(x0_3)output4 = self.final4(x0_4)return [output1, output2, output3, output4] # 深监督,有四个损失函数共同训练else:output = self.final(x0_4)return output

推荐阅读
  • Beetl是一款先进的Java模板引擎,以其丰富的功能、直观的语法、卓越的性能和易于维护的特点著称。它不仅适用于高响应需求的大型网站,也适合功能复杂的CMS管理系统,提供了一种全新的模板开发体验。 ... [详细]
  • 本文详细介绍了 `org.apache.tinkerpop.gremlin.structure.VertexProperty` 类中的 `key()` 方法,并提供了多个实际应用的代码示例。通过这些示例,读者可以更好地理解该方法在图数据库操作中的具体用途。 ... [详细]
  • 本文详细介绍了JQuery Mobile框架中特有的事件和方法,帮助开发者更好地理解和应用这些特性,提升移动Web开发的效率。 ... [详细]
  • 洛谷 P4009 汽车加油行驶问题 解析
    探讨了经典算法题目——汽车加油行驶问题,通过网络流和费用流的视角,深入解析了该问题的解决方案。本文将详细阐述如何利用最短路径算法解决这一问题,并提供详细的代码实现。 ... [详细]
  • 本文通过分析一个具体的案例,探讨了64位Linux系统对32位应用程序的兼容性问题。案例涉及OpenVPN客户端在64位系统上的异常行为,通过逐步排查和代码测试,最终定位到了与TUN/TAP设备相关的系统调用兼容性问题。 ... [详细]
  • 本文介绍了如何利用X_CORBA实现远程对象调用,并通过多个示例程序展示了其功能与应用,包括基础的Hello World示例、文件传输工具以及一个完整的聊天系统。 ... [详细]
  • 本文探讨了如何在PHP与MySQL环境中实现高效的分页查询,包括基本的分页实现、性能优化技巧以及高级的分页策略。 ... [详细]
  • td{border:1pxsolid#808080;}参考:和FMX相关的类(表)TFmxObjectIFreeNotification ... [详细]
  • 本文是对《敏捷软件开发:原则、模式与实践》一书的深度解析,书中不仅探讨了敏捷方法的核心理念及其应用,还详细介绍了面向对象设计的原则、设计模式的应用技巧及UML的有效使用。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • 二叉搜索树转换为排序双向链表的面试题解析
    本文探讨了一道经典的面试问题,即将给定的一棵二叉搜索树转换为一个排序的双向链表,过程中不允许创建新节点,仅能通过调整现有节点的指针来实现转换。 ... [详细]
  • 如何高效解决Android应用ANR问题?
    本文介绍了ANR(应用程序无响应)的基本概念、常见原因及其解决方案,并提供了实用的工具和技巧帮助开发者快速定位和解决ANR问题,提高应用的用户体验。 ... [详细]
  • 原文地址:https:blog.csdn.netqq_35361471articledetails84715491原文地址:https:blog.cs ... [详细]
  • 本文介绍了如何利用jQuery实现对网页上多个div元素的显示与隐藏控制,包括基本的toggle方法及更复杂的显示隐藏逻辑。 ... [详细]
author-avatar
三封酒可_894
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有