十一、图像恢复-修复
27 WaveFill: A Wavelet-based Generation Network for Image Inpainting
图像修复旨在用逼真的内容完成图像缺失或损坏的区域。当前流行的方法通过使用生成对抗网络重建具有较好感知质量的结果。但重建损失和对抗性损失侧重于合成不同频率的内容,简单地将它们一起应用通常会导致频率间的冲突。
本文引进WaveFill,基于小波修复,将图像分解为多个频段,并分别明确地填充每个频段中的缺失区域。WaveFill 使用离散小波变换 (DWT) 分解图像,自然地保留空间信息。它将L1重建损失应用于分解的低频段,将对抗性损失应用于高频段,从而在完成空间域图像的同时有效地减轻频间冲突。为了解决不同频段的修复不一致问题并融合具有不同统计数据的特征,设计一种新的归一化方案,可有效对齐和融合多频特征。大量实验表明WaveFill 在定性和定量上的优越性
28 Painting from Part
29 High-Fidelity Pluralistic Image Completion with Transformers
30 Image Inpainting via Conditional Texture and Structure Dual Generation
本文提出一种用于图像修复的新型双流网络,以耦合方式进行结构约束的纹理合成,以及纹理引导的结构重建,可以更好地相互利用以获得更合理的生成。此外,为增强全局一致性,设计双向门控特征融合(Bi-GFF)模块来交换和组合结构和纹理信息,并开发上下文特征聚合(CFA)模块。CelebA、Paris StreetView 和 Places2 数据集上的定性和定量实验证明了所提出方法的优越性。
31 Learning High-Fidelity Face Texture Completion without Complete Face Texture
提出DSD-GAN,在 UV 空间和图像空间中应用两个判别器,以互补的方式学习结构和纹理细节。
32 Learning a Sketch Tensor Space for Image Inpainting of Man-made Scenes
33 Parallel Multi-Resolution Fusion Network for Image Inpainting
34 CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction
最近的图像修复方法使用注意力机制层来促使生成器从已知区域借用特征块来完成缺失区域。由于缺少对缺失区域和已知区域之间对应关系的监督信号,可能无法找到合适的参考特征,导致结果出现伪影。此外,它在推理过程中计算整个特征图的成对相似度,带来不小的计算开销。
为此,提出辅助上下文重建任务的联合训练,无注意力的生成器同样可以学习到这种借用周边特征去修复的能力,使得输出也合理。辅助分支可以看作是一个可学习的损失函数,即命名为上下文重建(contextual reconstruction ,CR)损失,其中查询参考特征相似性和基于参考的重建器与修复生成器联合优化。
实验结果表明,所提出的修复模型在定量和视觉性能方面优于最先进的模型。
https://github.com/zengxianyu/crfill
猜您喜欢:
戳我,查看GAN的系列专辑~!
一顿午饭外卖,成为CV视觉的前沿弄潮儿!
超110篇!CVPR 2021最全GAN论文汇总梳理!
超100篇!CVPR 2020最全GAN论文梳理汇总!
拆解组新的GAN:解耦表征MixNMatch
StarGAN第2版:多域多样性图像生成
附下载 | 《可解释的机器学习》中文版
附下载 |《TensorFlow 2.0 深度学习算法实战》
附下载 |《计算机视觉中的数学方法》分享
《基于深度学习的表面缺陷检测方法综述》
《零样本图像分类综述: 十年进展》
《基于深度神经网络的少样本学习综述》