热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

图像处理经典图片Lena背后的故事

点击上方“小白学视觉”,选择加星标或“置顶”重磅干货,第一时间送达本文转自|新机器视觉在数字图像处理中,Lena(Len

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达本文转自|新机器视觉

在数字图像处理中,Lena(Lenna)是一张被广泛使用的标准图片,特别在图像压缩的算法研究中。


(为什么用这幅图,是因为这图的各个频段的能量都很丰富:即有低频(光滑的皮肤),也有高频(帽子上的羽毛),很适合来验证各种算法)

然而,这张图片背后的故事是颇有意思的,很多人都抱有学究都是呆子的看法,然而Lena对此就是一个有力的驳斥。lena(lenna)是一张于1972年11月出版的Playboy的中间插页,在这期杂志中使用了“Lenna”的拼写,而实际莉娜在瑞典语中的拼写是“lena”。如今的Lena生活在自己的祖国瑞典,从事于酿造业,婚后并生下3个孩子。

从1973年以来,Lena就开始出现在图像处理的科学论文中,直到1988年,她才得知自己原来已经被从事图像处理行业的工作者认识。 1997年,lena 被邀请参加了在波士顿举办的第50届图像科技技术年会。

1973年6,7月间,南加州大学信号图像处理研究所的副教授Alexander和学生一起,为了一个同事的学会论文正忙于寻找一副好的图片。他们想要一副具有良好动态范围的人的面部图片用于扫描。不知是谁拿着一本Playboy走进研究室。由于当时实验室里使用的扫描仪(Muirhead wirephoto scanner)分辨率是100行/英寸,试验也仅仅需要一副512X512的图片,所以他们只将图片顶端开始的5.12英寸扫描下来,切掉肩膀一下的部分。多年以来,由于图像Lena源于Playboy,将其引用于科技文章中饱受争议。Playboy杂志也将未授权的引用告上法庭。随着时间流失,人们渐渐淡忘Lena的来源,Playboy也放松了对此的关注。值得一提的是,Lena也是playboy发行的最畅销的海报,已经出售7,161,561份。

这个是原版的Lena照片,图像处理的初学者一定会大跌眼镜吧

PlayBoy杂志封面上的Lena.jpg;

https://img-blog.csdn.net/20140702104120484

另外一件有趣的事情是,Lenna的那一期杂志是当时Playboy销量最好的一期,共卖出去了7161561份。

现在Lena.jpg

标准Lena.jpg

该图原本是刊于1972年11月号花花公子杂志上的一张裸体插图照片的一部分,这期花花公子也是历年来最畅销的一期,销量达7,161,561本。1973 年6月,美国南加州大学的信号图像处理研究所的一个助理教授和他的一个研究生打算为了一个学术会议找一张数字照片,而他们对于手头现有成堆"无聊"照片感到厌烦。事实上他们需要的是一个人脸照片,同时又能让人眼前一亮。这时正好有人走进实验室,手上带着一本当时的花花公子杂志,结果故事发生了……而限于当时实验室设备和测试图片的需要,lenna的图片只抠到了原图的肩膀部分。

图中人为瑞典模特儿 Lena Soderberg (Lena Söderberg)。现在被广泛使用的英文化名字"Lenna"最初是由花花公子杂志发表此照片时命名的,以方便英语读者近似正确地读出瑞典语中"Lena"的发音。Lena Soderberg女士现在仍住在她的家乡瑞典,拥有一个有三个孩子的家庭,并且在国家酒类专卖局工作。在1988年的时候,她接受了瑞典一些计算机相关出版社的访问,她对于她的照片有这样的奇遇感到非常的惊奇与兴奋。这是她首次得知她的照片被应用在计算机行业。Lena Soderberg于1997年被邀请为嘉宾,参加了数字图像科学技术50周年学术会议。在该会议上,Lenna成了最受欢迎的人之一,她做了关于自己介绍的简要发言,并被无数的fans索取签名。 

莱娜图在图像压缩算法是最广泛应用的标准测试图——她的脸部与裸露的肩部已经变成了事实上的工业准。然而,这张图像的使用也引起了一些争议。一些人担心它的色情内容;《花花公子》杂志曾经威胁要起诉对莱娜图未经授权的使用。不过这家杂志已经放弃了这种威胁,取而代之的是鼓励因为公众利益使用莱娜图。

戴维·C·蒙森(David C.Munson),IEEE图像处理汇刊(IEEE Transactions on Image Processing)的主编, 在1996年1月引用了两个原因来说明莱娜图在科研领域流行的原因:1.该图适度的混合了细节、平滑区域、阴影和纹理,从而能很好的测试各种图像处理算法。2.Lenna是个美女,对于图象处理界的研究者来说,美女图可以有效的吸引他们来做研究。

 End 

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~



推荐阅读
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • MATLAB实现Sobel边缘检测算法
    图像边缘是指图像中灰度值发生显著变化的区域。Sobel算子是一种常用的边缘检测方法,通过计算图像灰度值的梯度来检测边缘。本文介绍了Sobel算子的基本原理,并提供了基于MATLAB的实现代码。 ... [详细]
  • 解决Only fullscreen opaque activities can request orientation错误的方法
    本文介绍了在使用PictureSelectorLight第三方框架时遇到的Only fullscreen opaque activities can request orientation错误,并提供了一种有效的解决方案。 ... [详细]
  • 本文回顾了作者初次接触Unicode编码时的经历,并详细探讨了ASCII、ANSI、GB2312、UNICODE以及UTF-8和UTF-16编码的区别和应用场景。通过实例分析,帮助读者更好地理解和使用这些编码。 ... [详细]
  • Visual Studio Code (VSCode) 是一款功能强大的源代码编辑器,支持多种编程语言,具备丰富的扩展生态。本文将详细介绍如何在 macOS 上安装、配置并使用 VSCode。 ... [详细]
  • 微信公众号推送模板40036问题
    返回码错误码描述说明40001invalidcredential不合法的调用凭证40002invalidgrant_type不合法的grant_type40003invalidop ... [详细]
  • 本文将深入探讨 iOS 中的 Grand Central Dispatch (GCD),并介绍如何利用 GCD 进行高效多线程编程。如果你对线程的基本概念还不熟悉,建议先阅读相关基础资料。 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • 高端存储技术演进与趋势
    本文探讨了高端存储技术的发展趋势,包括松耦合架构、虚拟化、高性能、高安全性和智能化等方面。同时,分析了全闪存阵列和中端存储集群对高端存储市场的冲击,以及高端存储在不同应用场景中的发展趋势。 ... [详细]
  • HTTP(HyperTextTransferProtocol)是超文本传输协议的缩写,它用于传送www方式的数据。HTTP协议采用了请求响应模型。客服端向服务器发送一 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 双指针法在链表问题中应用广泛,能够高效解决多种经典问题,如合并两个有序链表、合并多个有序链表、查找倒数第k个节点等。本文将详细介绍这些应用场景及其解决方案。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • 本文详细介绍了如何使用OpenSSL自建CA证书的步骤,包括准备工作、生成CA证书、生成服务器待签证书以及证书签名等过程。 ... [详细]
author-avatar
手机用户2602906131
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有