对于用于超分辨率重建的卷积神经网络SRCNN,唯一的预处理步骤为bicubic(双三次插值),将所给低分辨率图像构建为目标像素大小。
例如我们有一个32*32像素的图片,想将其重建为64*64像素分辨率的图片,则先使用双三次插值法,将32*32像素的图片扩大到64*64,再将所得图像放入SRCNN进行后续步骤。
插值法的理解如下图:
例如将一个2*2像素的图片 放大两倍至4*4
1、插入像素点
2、对插入的像素点填充亮度值,以dest(I,J)为例,具体步骤为:
(1)根据映射关系,找到dest(I,J)在原图origin中最靠近的像素点ori(u,v),此处ori(u,v)=90
(2)以ori(u,v)为中心,向外辐射16个点,这16个点的坐标为ori(i+u,j+v),i,j的取值范围为-1<=i<=2;-1<=j<=2,如果原图没有这些像素点,可以做填充补全。
(3)根据某种关系对这16个点进行运算(类似于卷积),得到dest(I,J)处的亮度值。