热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

图神经网络_中文免费简书《图神经网络模型(GNN)原理及应用综述》pdf免费分享

本文由编程笔记#小编为大家整理,主要介绍了中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享相关的知识,希望对你有一定的参考价值。
本文由编程笔记#小编为大家整理,主要介绍了中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享相关的知识,希望对你有一定的参考价值。





























    图(graph)是⼀种数据结构,图神经⽹络(GNN)是深度学习在图结构上的⼀个分⽀。常⻅的图结构包含节点(node)和边(edge),其中,节点包含了实体(entity)信息,边包含实体间的关系(relation)信息。现在许多学习任务都需要处理图结构的数据,⽐如物理系统建模(physics system)、学习分⼦指纹(molecularfingerprints)、蛋⽩质接⼝预测(protein interface)以及疾病分类(classify diseases),这些都需要模型能够从图结构的输⼊中学习相关的知识。 




     


GNN起源 


    GNN起源于两种动机,⼀种动机来⾃于卷积神经⽹络(CNN),另⼀种动机来⾃于图嵌⼊(graphembedding)。第⼀种来源于CNN,CNN能够提取出多尺度的局部空间特征,并将它们进⾏组合来构建更加⾼级的表⽰(expressive representations)。如果深⼊研究CNN和图结构的特点,可以发现CNN的核⼼特点在于:局部连接(local connection),权重共享(shared weights)和多层叠加(multi-layer)。这些同样在图问题中⾮常试⽤,因为图结构是最典型的局部连接结构,其次,共享权重可以减少计算量,另外,多层结构是处理分级模式(hierarchical patterns)的关键。然⽽,CNN只能在欧⼏⾥得数据(Euclideandata),⽐如⼆维图⽚和⼀维⽂本数据上进⾏处理,⽽这些数据只是图结构的特例⽽已,对于⼀般的图结构,可以发现很难将CNN中的卷积核(convolutional filters)和池化操作(pooling operators)迁移到图的操作上。


     


本书目录






中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




     


内容节选






中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




















































































往期精品内容推荐
















































中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享




扫描下方二维码可以订阅哦!












中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享







中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享


DeepLearning_NLP




中文免费简书-《图神经网络模型(GNN)原理及应用综述》pdf免费分享











深度学习与NLP

























推荐阅读
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 开发心得:深入探讨Servlet、Dubbo与MyBatis中的责任链模式应用
    开发心得:深入探讨Servlet、Dubbo与MyBatis中的责任链模式应用 ... [详细]
  • Python中判断一个集合是否为另一集合子集的两种高效方法及其应用场景分析 ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 本文将继续探讨 JavaScript 函数式编程的高级技巧及其实际应用。通过一个具体的寻路算法示例,我们将深入分析如何利用函数式编程的思想解决复杂问题。示例中,节点之间的连线代表路径,连线上的数字表示两点间的距离。我们将详细讲解如何通过递归和高阶函数等技术实现高效的寻路算法。 ... [详细]
  • 在前文探讨了Spring如何为特定的bean选择合适的通知器后,本文将进一步深入分析Spring AOP框架中代理对象的生成机制。具体而言,我们将详细解析如何通过代理技术将通知器(Advisor)中包含的通知(Advice)应用到目标bean上,以实现切面编程的核心功能。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 在《Python编程基础》课程中,我们将深入探讨Python中的循环结构。通过详细解析for循环和while循环的语法与应用场景,帮助初学者掌握循环控制语句的核心概念和实际应用技巧。此外,还将介绍如何利用循环结构解决复杂问题,提高编程效率和代码可读性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 理工科男女不容错过的神奇资源网站
    十一长假即将结束,你的假期学习计划进展如何?无论你是在家中、思念家乡,还是身处异国他乡,理工科学生都不容错过一些神奇的资源网站。这些网站提供了丰富的学术资料、实验数据和技术文档,能够帮助你在假期中高效学习和提升专业技能。 ... [详细]
  • 在Python编程中,掌握高级技巧对于提升代码效率和可读性至关重要。本文重点探讨了生成器和迭代器的应用,这两种工具不仅能够优化内存使用,还能简化复杂数据处理流程。生成器通过按需生成数据,避免了大量数据加载对内存的占用,而迭代器则提供了一种优雅的方式来遍历集合对象。此外,文章还深入解析了这些高级特性的实际应用场景,帮助读者更好地理解和运用这些技术。 ... [详细]
  • 视觉图像的生成机制与英文术语解析
    近期,Google Brain、牛津大学和清华大学等多家研究机构相继发布了关于多层感知机(MLP)在视觉图像分类中的应用成果。这些研究深入探讨了MLP在视觉任务中的工作机制,并解析了相关技术术语,为理解视觉图像生成提供了新的视角和方法。 ... [详细]
author-avatar
小秋学长
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有