热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

图解G1GC原理

G1的主要关注点在于达到可控的停顿时间,在这个基础上尽可能提高吞吐量,这一点非常重要。G1被设计用来长期取代CMS收集器,和CMS相同的

G1 的主要关注点在于达到 可控的停顿时间 ,在这个基础上尽可能提高吞吐量,这一点非常重要。

G1 被设计用来长期取代 CMS 收集器,和 CMS 相同的地方在于,它们都属于并发收集器,在大部分的收集阶段都不需要挂起应用程序。区别在于,G1 没有 CMS 的碎片化问题(或者说不那么严重),同时提供了更加可控的停顿时间。

如果你的应用使用了较大的堆(如 6GB 及以上)而且还要求有较低的垃圾收集停顿时间(如 0.5 秒),那么 G1 是你绝佳的选择,是时候放弃 CMS 了。

阅读建议 :本文力求用简单的话介绍清楚 G1 收集器,但是并不会重复介绍每一个细节,所以希望读者了解其他几个收集器的工作过程,尤其是 CMS 收集器。

G1 总览

首先是内存划分上,之前介绍的分代收集器将整个堆分为年轻代、老年代和永久代,每个代的空间是确定的。

而 G1 将整个堆划分为一个个大小相等的小块(每一块称为一个 region),每一块的内存是连续的。和分代算法一样,G1 中每个块也会充当 Eden、Survivor、Old 三种角色,但是它们不是固定的,这使得内存使用更加地灵活。

 

执行垃圾收集时,和 CMS 一样,G1 收集线程在标记阶段和应用程序线程 并发 执行,标记结束后,G1 也就知道哪些区块基本上是垃圾,存活对象极少,G1 会先从这些区块下手,因为从这些区块能很快释放得到很大的可用空间, 这也是为什么 G1 被取名为 Garbage-First 的原因

这里只不过是先介绍些概念,没看懂没关系,往下看

在 G1 中,目标停顿时间非常非常重要,用 -XX:MaxGCPauseMillis=200 指定期望的停顿时间。

G1 使用了 停顿预测模型 来满足用户指定的停顿时间目标,并基于目标来选择进行垃圾回收的区块数量。G1 采用增量回收的方式,每次回收一些区块,而不是整堆回收。

我们要知道 G1 不是一个实时收集器,它会尽力满足我们的停顿时间要求,但也不是绝对的,它基于之前垃圾收集的数据统计,估计出在用户指定的停顿时间内能收集多少个区块。

注意: G1 有和应用程序一起运行的并发阶段,也有 stop-the-world 的并行阶段。但是, Full GC 的时候还是单线程运行的 ,所以我们应该尽量避免发生 Full GC,后面我们也会介绍什么时候会触发 Full GC。

G1 内存占用

注:这里不那么重要。

G1 比 ParallelOld 和 CMS 会需要更多的内存消耗,那是因为有部分内存消耗于簿记(accounting)上,如以下两个数据结构:

Remembered Sets :每个区块都有一个 RSet,用于记录进入该区块的对象引用(如区块 A 中的对象引用了区块 B,区块 B 的 Rset 需要记录这个信息),它用于实现收集过程的并行化以及使得区块能进行独立收集。总体上 Remembered Sets 消耗的内存小于 5%。

Collection Sets :将要被回收的区块集合。GC 时,在这些区块中的对象会被复制到其他区块中,总体上 Collection Sets 消耗的内存小于 1%。

G1 工作流程

前面啰里啰嗦说了挺多的,唯一要记住的就是,G1 的设计目标就是尽力满足我们的目标停顿时间上的要求。

本节介绍 G1 的收集过程,G1 收集器主要包括了以下 4 种操作:

1、年轻代收集

2、并发收集,和应用线程同时执行

3、混合式垃圾收集

*、必要时的 Full GC

接下来,我们进行一一介绍。

年轻代收集

首先,我们来看下 G1 的堆结构:

 

年轻代中的垃圾收集流程(Young GC):

 

我们可以看到,年轻代收集概念上和之前介绍的其他分代收集器大差不差的,但是它的年轻代会动态调整。

Old GC / 并发标记周期

接下来是 Old GC 的流程(含 Young GC 阶段),其实把 Old GC 理解为 并发周期 是比较合理的,不要单纯地认为是清理老年代的区块,因为这一步和年轻代收集也是相关的。下面我们介绍主要流程:

初始标记:stop-the-world,它伴随着一次普通的 Young GC 发生,然后对 Survivor 区(root region)进行标记,因为该区可能存在对老年代的引用。

因为 Young GC 是需要 stop-the-world 的,所以并发周期直接重用这个阶段,虽然会增加 CPU 开销,但是停顿时间只是增加了一小部分。

扫描根引用区:扫描 Survivor 到老年代的引用,该阶段必须在下一次 Young GC 发生前结束。

这个阶段不能发生年轻代收集,如果中途 Eden 区真的满了,也要等待这个阶段结束才能进行 Young GC。

并发标记:寻找整个堆的存活对象,该阶段可以被 Young GC 中断。

这个阶段是并发执行的,中间可以发生多次 Young GC,Young GC 会中断标记过程

重新标记:stop-the-world,完成最后的存活对象标记。使用了比 CMS 收集器更加高效的 snapshot-at-the-beginning (SATB) 算法。

Oracle 的资料显示,这个阶段会回收完全空闲的区块

清理:清理阶段真正回收的内存很少。

到这里,G1 的一个并发周期就算结束了,其实就是主要完成了垃圾定位的工作,定位出了哪些分区是垃圾最多的。

混合垃圾回收周期

并发周期结束后是混合垃圾回收周期,不仅进行年轻代垃圾收集,而且回收之前标记出来的老年代的垃圾最多的部分区块。

混合垃圾回收周期会持续进行,直到几乎所有的被标记出来的分区(垃圾占比大的分区)都得到回收,然后恢复到常规的年轻代垃圾收集,最终再次启动并发周期。

Full GC

到这里我们已经说了年轻代收集、并发周期、混合回收周期了,大家要熟悉这几个阶段的工作。

下面我们来介绍特殊情况,那就是会导致 Full GC 的情况,也是我们需要极力避免的:

concurrent mode failure:并发模式失败,CMS 收集器也有同样的概念。G1 并发标记期间,如果在标记结束前,老年代被填满,G1 会放弃标记。

这个时候说明

堆需要增加了,

或者需要调整并发周期,如增加并发标记的线程数量,让并发标记尽快结束

或者就是更早地进行并发周期,默认是整堆内存的 45% 被占用就开始进行并发周期。

晋升失败:并发周期结束后,是混合垃圾回收周期,伴随着年轻代垃圾收集,进行清理老年代空间,如果这个时候清理的速度小于消耗的速度,导致老年代不够用,那么会发生晋升失败。

说明混合垃圾回收需要更迅速完成垃圾收集,也就是说在混合回收阶段,每次年轻代的收集应该处理更多的老年代已标记区块。

疏散失败:年轻代垃圾收集的时候,如果 Survivor 和 Old 区没有足够的空间容纳所有的存活对象。这种情况肯定是非常致命的,因为基本上已经没有多少空间可以用了,这个时候会触发 Full GC 也是很合理的。

最简单的就是增加堆大小

大对象分配失败,我们应该尽可能地不创建大对象,尤其是大于一个区块大小的那种对象。

简单小结

看完上面的 Young GC 和 Old GC 等,很多读者可能还是很懵的,这里说几句不严谨的白话文帮助读者进行理解:

首先,最好不要把上面的 Old GC 当做是一次 GC 来看,而应该当做 并发标记周期 来理解,虽然它确实会释放出一些内存。

并发标记结束后,G1 也就知道了哪些区块是最适合被回收的,那些完全空闲的区块会在这这个阶段被回收。如果这个阶段释放了足够的内存出来,其实也就可以认为结束了一次 GC。

我们假设并发标记结束了,那么下次 GC 的时候,还是会先回收年轻代,如果从年轻代中得到了足够的内存,那么结束;过了几次后,年轻代垃圾收集不能满足需要了,那么就需要利用之前并发标记的结果,选择一些活跃度最低的老年代区块进行回收。直到最后,老年代会进入下一个并发周期。

那么什么时候会启动并发标记周期呢?这个是通过参数控制的,下面马上要介绍这个参数了,此参数默认值是 45,也就是说当堆空间使用了 45% 后,G1 就会进入并发标记周期。

G1 参数配置和最佳实践

G1 调优的目标是尽量避免出现 Full GC,其实就是给老年代足够的空间,或相对更多的空间。

有以下几点我们可以进行调整的方向:

增加堆大小,或调整老年代和年轻代的比例,这个很好理解

增加并发周期的线程数量,其实就是为了加快并发周期快点结束

让并发周期尽早开始,这个是通过设置堆使用占比来调整的(默认 45%)

在混合垃圾回收周期中回收更多的老年代区块

G1 的很重要的目标是达到可控的停顿时间,所以很多的行为都以这个目标为出发点开展的。

我们通过设置 -XX:MaxGCPauseMillis=N 来指定停顿时间(单位 ms,默认 200ms),如果没有达到这个目标,G1 会通过各种方式来补救:调整年轻代和老年代的比例,调整堆大小,调整晋升的年龄阈值,调整混合垃圾回收周期中处理的老年代的区块数量等等。

当然了,调整每个参数满足了一个条件的同时往往也会引入另一个问题,比如为了降低停顿时间,我们可以减小年轻代的大小,可是这样的话就会增加年轻代垃圾收集的频率。如果我们减少混合垃圾回收周期处理的老年代区块数量,虽然可以更容易满足停顿时间要求,可是这样就会增加 Full GC 的风险等等。

下面介绍最常用也是最基础的一些参数的设置,涉及到更高级的调优参数设置,请读者自行参阅其他资料。

参数介绍 :

-XX:+UseG1GC

使用 G1 收集器

-XX:MaxGCPauseMillis=200

指定目标停顿时间,默认值 200 毫秒。

在设置 -XX:MaxGCPauseMillis 值的时候,不要指定为平均时间,而应该指定为满足 90% 的停顿在这个时间之内。记住,停顿时间目标是我们的目标,不是每次都一定能满足的。

-XX:InitiatingHeapOccupancyPercent=45

整堆使用达到这个比例后,触发并发 GC 周期,默认 45%。

如果要降低晋升失败的话,通常可以调整这个数值,使得并发周期提前进行

-XX:NewRatio=n

老年代/年轻代,默认值 2,即 1/3 的年轻代,2/3 的老年代

不要设置年轻代为固定大小,否则:

G1 不再需要满足我们的停顿时间目标

不能再按需扩容或缩容年轻代大小

-XX:SurvivorRatio=n

Eden/Survivor,默认值 8,这个和其他分代收集器是一样的

-XX:MaxTenuringThreshold =n

从年轻代晋升到老年代的年龄阈值,也是和其他分代收集器一样的

-XX:ParallelGCThreads=n

并行收集时候的垃圾收集线程数

-XX:ConcGCThreads=n

并发标记阶段的垃圾收集线程数

增加这个值可以让并发标记更快完成,如果没有指定这个值,JVM 会通过以下公式计算得到:

ConcGCThreads=(ParallelGCThreads + 2) / 4^3

-XX:G1ReservePercent=n

堆内存的预留空间百分比,默认 10,用于降低晋升失败的风险,即默认地会将 10% 的堆内存预留下来。

-XX:G1HeapRegionSize=n

每一个 region 的大小,默认值为根据堆大小计算出来,取值 1MB~32MB,这个我们通常指定整堆大小就好了。


推荐阅读
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 深入浅析JVM垃圾回收机制与收集器概述
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)》的阅读心得进行整理,详细探讨了JVM的垃圾回收机制及其各类收集器的特点与应用场景。通过分析不同垃圾收集器的工作原理和性能表现,帮助读者深入了解JVM内存管理的核心技术,为优化Java应用程序提供实用指导。 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • 深入解析 Synchronized 锁的升级机制及其在并发编程中的应用
    深入解析 Synchronized 锁的升级机制及其在并发编程中的应用 ... [详细]
  • 线程能否先以安全方式获取对象,再进行非安全发布? ... [详细]
  • 本文深入解析了Java 8并发编程中的`AtomicInteger`类,详细探讨了其源码实现和应用场景。`AtomicInteger`通过硬件级别的原子操作,确保了整型变量在多线程环境下的安全性和高效性,避免了传统加锁方式带来的性能开销。文章不仅剖析了`AtomicInteger`的内部机制,还结合实际案例展示了其在并发编程中的优势和使用技巧。 ... [详细]
  • 揭秘腾讯云CynosDB计算层设计优化背后的不为人知的故事与技术细节
    揭秘腾讯云CynosDB计算层设计优化背后的不为人知的故事与技术细节 ... [详细]
  • 深入解析Spring Boot启动过程中Netty异步架构的工作原理与应用
    深入解析Spring Boot启动过程中Netty异步架构的工作原理与应用 ... [详细]
  • 2021年7月22日上午9点至中午12点,我专注于Java的学习,重点补充了之前在视频中遗漏的多线程知识。首先,我了解了进程的概念,即程序在内存中运行时形成的一个独立执行单元。其次,学习了线程作为进程的组成部分,是进程中可并发执行的最小单位,负责处理具体的任务。此外,我还深入研究了Runnable接口的使用方法及其在多线程编程中的重要作用。 ... [详细]
  • 在并发编程中,`as-if-serial`原则确保了即使编译器和处理器对指令进行重排序,单线程的执行结果也不会受到影响。这一原则要求编译器、运行时环境和处理器必须严格遵守,以保证程序的正确性。本文深入探讨了`volatile`关键字的内存模型,详细分析了其在多线程环境中的可见性和有序性特性,以及如何通过`as-if-serial`规则来确保数据的一致性和可靠性。 ... [详细]
  • Java中高级工程师面试必备:JVM核心知识点全面解析
    对于软件开发人员而言,随着技术框架的不断演进和成熟,许多高级功能已经被高度封装,使得初级开发者只需掌握基本用法即可迅速完成项目。然而,对于中高级工程师而言,深入了解Java虚拟机(JVM)的核心知识点是必不可少的。这不仅有助于优化性能和解决复杂问题,还能在面试中脱颖而出。本文将全面解析JVM的关键概念和技术细节,帮助读者全面提升技术水平。 ... [详细]
  • JVM参数设置与命令行工具详解
    JVM参数配置与命令行工具的深入解析旨在优化系统性能,通过合理设置JVM参数,确保在高吞吐量的前提下,有效减少垃圾回收(GC)的频率,进而降低系统停顿时间,提升服务的稳定性和响应速度。此外,本文还将详细介绍常用的JVM命令行工具,帮助开发者更好地监控和调优JVM运行状态。 ... [详细]
  • 零拷贝技术是提高I/O性能的重要手段,常用于Java NIO、Netty、Kafka等框架中。本文将详细解析零拷贝技术的原理及其应用。 ... [详细]
  • 阿里巴巴终面技术挑战:如何利用 UDP 实现 TCP 功能?
    在阿里巴巴的技术面试中,技术总监曾提出一道关于如何利用 UDP 实现 TCP 功能的问题。当时回答得不够理想,因此事后进行了详细总结。通过与总监的进一步交流,了解到这是一道常见的阿里面试题。面试官的主要目的是考察应聘者对 UDP 和 TCP 在原理上的差异的理解,以及如何通过 UDP 实现类似 TCP 的可靠传输机制。 ... [详细]
  • 在数据库事务处理中,InnoDB 存储引擎提供了多种隔离级别,其中 READ COMMITTED 和 REPEATABLE READ 是两个常用的选项。本文详细对比了这两种隔离级别的特点和差异,不仅从理论角度分析了它们对“脏读”和“幻读”的处理方式,还结合实际应用场景探讨了它们在并发控制和性能表现上的不同。特别关注了行锁机制在不同隔离级别下的行为,为开发者选择合适的隔离级别提供了参考。 ... [详细]
author-avatar
刘诗宪668964
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有