热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

吴恩达DeepLearning.ai笔记(1-4)--深层神经网络

神经网络和深度学习—深层神经网络1.深度网络中的前向传播2.核对矩阵的维度DNN结构示意图如图所示:对于第L层神经网络,单个样本其各个参数的矩阵维度为:

神经网络和深度学习—深层神经网络

1.深度网络中的前向传播


2. 核对矩阵的维度

DNN结构示意图如图所示:


对于第L层神经网络,单个样本其各个参数的矩阵维度为:

  • W[l](n[l],n[l1])
  • b[l](n[l],1)
  • dW[l](n[l],n[l1])
  • db[l](n[l],1)
  • Z[l](n[l],1)
  • A[l]=Z[l](n[l],1)

3. 为什么使用深层表示

人脸识别和语音识别:


     对于人脸识别,神经网络的第一层从原始图片中提取人脸的轮廓和边缘,每个神经元学习到不同边缘的信息;网络的第二层将第一层学得的边缘信息组合起来,形成人脸的一些局部的特征,例如眼睛、嘴巴等;后面的几层逐步将上一层的特征组合起来,形成人脸的模样。随着神经网络层数的增加,特征也从原来的边缘逐步扩展为人脸的整体,由整体到局部,由简单到复杂。层数越多,那么模型学习的效果也就越精确。

     对于语音识别,第一层神经网络可以学习到语言发音的一些音调,后面更深层次的网络可以检测到基本的音素,再到单词信息,逐渐加深可以学到短语、句子。

     所以从上面的两个例子可以看出随着神经网络的深度加深,模型能学习到更加复杂的问题,功能也更加强大。

电路逻辑计算:


假定计算异或逻辑输出:

y=x1x2x3xn

对于该运算,若果使用深度神经网络,每层将前一层的相邻的两单元进行异或,最后到一个输出,此时整个网络的层数为一个树形的形状,网络的深度为O(log2(n)),共使用的神经元的个数为:


即输入个数为n,输出个数为n-1。

但是如果不使用深层网络,仅仅使用单隐层的网络(如右图所示),需要的神经元个数为2n1 个 。同样的问题,但是深层网络要比浅层网络所需要的神经元个数要少得多。

4. 前向和反向传播

首先给定DNN的一些参数:





4. 参数和超参数

参数:

参数即是我们在过程中想要模型学习到的信息,W[l]b[l]

超参数:

超参数即为控制参数的输出值的一些网络信息,也就是超参数的改变会导致最终得到的参数W[l]b[l]的改变。

举例:

  • 学习速率:α
  • 迭代次数:N
  • 隐藏层的层数:L
  • 每一层的神经元个数:n[1]n[2],
  • 激活函数g(z)的选择


推荐阅读
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 由中科院自动化所、中科院大学及南昌大学联合研究提出了一种新颖的双路径生成对抗网络(TP-GAN),该技术能通过单一侧面照片生成逼真的正面人脸图像,显著提升了不同姿态下的人脸识别效果。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • 回顾与学习是进步的阶梯。再次审视卷积神经网络(CNNs),我对之前不甚明了的概念有了更深的理解。本文旨在分享这些新的见解,并探讨CNNs在图像识别和自然语言处理等领域中的实际应用。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 本文探讨了如何在TensorFlow中使用张量来处理和分析数字图像,特别是通过具体的代码示例展示了张量在图像处理中的作用。 ... [详细]
author-avatar
浅笑你的妩媚
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有