热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【Tensorflow2.5—入门实践】综合篇——物体识别、花朵分类、猫狗识别、风格迁移、文本分类

前言本文综合整理神经网络的入门实践,包括物体识别、花朵分类、猫狗识别、风格迁移、文本分类;参考了官网和许多高校的课程、论文等。文章的结构是一步一步详细

前言

本文综合整理神经网络的入门实践,包括物体识别、花朵分类、猫狗识别、风格迁移、文本分类;参考了官网和许多高校的课程、论文等。文章的结构是一步一步详细讲解,并动手实践;大家要不看看? ( •̀ ω •́ )y

 

开发环境


Tensorflow2、Python3

 

一、物体识别

简介

本文介绍卷积神经网络的入门案例,通过搭建和训练一个模型,来对10种常见的物体进行识别分类;使用到CIFAR10数据集,它包含10 类,即:“飞机”,“汽车”,“鸟”,“猫”,“鹿”, “狗”,“青蛙”,“马”,“船”,“卡车” ;共 60000 张彩色图片;通过搭建和训练卷积神经网络模型,对图像进行分类,能识别出图像是“汽车”,或“鸟”,还是其它。

思路流程

  1. 导入 CIFAR10 数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络结构、编译模型)
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型

数据集效果图

网络结构

详细介绍:手把手搭建一个【卷积神经网络】

 

二、花朵分类

简介

本文介绍卷积神经网络的入门案例,通过搭建和训练一个模型,来对几种常见的花朵进行识别分类;

使用到TF的花朵数据集,它包含5类,即:“雏菊”,“蒲公英”,“玫瑰”,“向日葵”,“郁金香”;共 3670 张彩色图片;通过搭建和训练卷积神经网络模型,对图像进行分类,能识别出图像是“蒲公英”,或“玫瑰”,还是其它。

意义

本篇文章主要的意义是带大家熟悉卷积神经网络的开发流程,包括数据集处理、搭建模型、训练模型、使用模型等;更重要的是解在训练模型时遇到“过拟合”,如何解决这个问题,从而得到“泛化”更好的模型。

思路流程

  1. 导入数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络结构、编译模型)
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型
  6. 优化模型、重新构建模型、训练模型、使用模型

模型效果

在训练和验证集上查看损失值和准确性:

详细介绍:“花朵分类“ 手把手搭建【卷积神经网络】

 

三、猫狗识别

简介

本章带大家熟悉“迁移学习”的开发流程,介绍如何使用预先训练好的神经网络,结合实际的功能需求,来实现一些图像任务;比如:实现对猫和狗的图像进行分类。

预先训练好的神经网络,通常称为“预训练模型”,它在大型数据集上进行训练,取得业界认可的效果,开源给广大开发者使用的模型。本文主要介绍在keras中的关于图像任务的开源模型。

迁移学习方式

我们可以直接使用预训练模型,毕竟效果挺好的;提供输入信息,经过模型处理,直接输出结果。

也可以使用预训练模型的一部分网络结构,使用其特定的功能(比如:特征提取),然后根据给定任务自定义搭建一部分网络结构(比如:实现分类),最后组合起来就形成一个完整的神经网络啦。本文主要将这种方式。

思路流程

  1. 导入数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络结构、编译模型)预训练模型 + 自定义模型
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型

模型效果

详细介绍:迁移学习之快速搭建【卷积神经网络】

 

四、风格迁移

简介

风格迁移,基于A图像内容,参考B图像的风格(名画,像毕加索或梵高一样绘画),创造出一幅新图像。

原理

风格迁移是基于生成对抗网络实现的,是一种优化技术,用于将两个图像,A图像内容和B图像风格,混合再一起,是输出的图像看起来像A图像,但是也参考了B图像的风格。

通过优化输出图像,以匹配A图像的内容统计数和B图像的风格统计数据。这些统计数据可以使用卷积网络从图像中提取。

项目实践

本文基于TF-Hub开源项目进行开发,60多行代码快速实现神经网络的风格迁移,为方便大家使用,已经整理相关代码和模型到Github中,直接下载即可使用。

模型效果

详细介绍:神经网络之风格迁移【TF-Hub开源项目】

 

五、文本分类

简介

本文介绍神经网络的案例,通过搭建和训练一个模型,来对电影评论进行“文本分类”;将影评分为积极消极两类;是一个二分类问题。

使用到网络电影数据库的 IMDB 数据集,包含 50,000 条影评文本,这是二元情绪分类的数据集。

意义

本篇文章主要的意义是带大家熟悉神经网络的开发流程,包括数据集处理、搭建模型、训练模型、使用模型等;更重要的认识“迁移学习”的开发流程,使用业界认可的网络模型作为“预训练模型”,提高开发效率。

思路流程

  1. 导入数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络、编译模型)
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型
  6. 优化模型、重新构建模型、训练模型、使用模型

设计模型

模型结构

详细介绍:【迁移学习】快速实现“文本分类“

 

小彩蛋

【神经网络】综合篇——人工神经网络、卷积神经网络、循环神经网络、生成对抗网络

 

大家加油呀~~ ( •̀ ω •́ )✧

 

 


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 解决Anaconda安装TensorFlow时遇到的TensorBoard版本问题
    本文介绍了在使用Anaconda安装TensorFlow时遇到的“Could not find a version that satisfies the requirement tensorboard”错误,并提供详细的解决方案,包括创建虚拟环境和配置PyCharm项目。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • 目录一、salt-job管理#job存放数据目录#缓存时间设置#Others二、returns模块配置job数据入库#配置returns返回值信息#mysql安全设置#创建模块相关 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 在Word中编辑复杂的数学公式常常让人感到头疼,尤其是处理偏微分方程(PDE)等高级数学内容时。然而,最近GitHub上的一个开源项目latexify_py展示了如何利用Python轻松生成LaTeX数学公式,极大地简化了这一过程。 ... [详细]
author-avatar
手机用户2502934787
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有