热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

TensorFlow中常用函数说明

本文主要对TensorFlow的一些常用概念与方法进行描述,TensorFlow常用函数如下:转载地址:https:blog.csdn.

本文主要对TensorFlow的一些常用概念与方法进行描述,TensorFlow常用函数如下:

转载地址:https://blog.csdn.net/lenbow/article/details/52152766


2、tf函数


操作组操作
MathsAdd, Sub, Mul, Div, Exp, Log, Greater, Less, Equal
ArrayConcat, Slice, Split, Constant, Rank, Shape, Shuffle
MatrixMatMul, MatrixInverse, MatrixDeterminant
Neuronal NetworkSoftMax, Sigmoid, ReLU, Convolution2D, MaxPool
CheckpointingSave, Restore
Queues and syncronizationsEnqueue, Dequeue, MutexAcquire, MutexRelease
Flow controlMerge, Switch, Enter, Leave, NextIteration


TensorFlow的算术操作如下:


操作描述
tf.add(x, y, name=None)求和
tf.sub(x, y, name=None)减法
tf.mul(x, y, name=None)乘法
tf.div(x, y, name=None)除法
tf.mod(x, y, name=None)取模
tf.abs(x, name=None)求绝对值
tf.neg(x, name=None)取负 (y = -x).
tf.sign(x, name=None)返回符号 y = sign(x) = -1 if x <0; 0 if x == 0; 1 if x > 0.
tf.inv(x, name=None)取反
tf.square(x, name=None)计算平方 (y = x * x = x^2).
tf.round(x, name=None)舍入最接近的整数
# ‘a’ is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ]
tf.sqrt(x, name=None)开根号 (y = \sqrt{x} = x^{1/2}).
tf.pow(x, y, name=None)幂次方
# tensor ‘x’ is [[2, 2], [3, 3]]
# tensor ‘y’ is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
tf.exp(x, name=None)计算e的次方
tf.log(x, name=None)计算log,一个输入计算e的ln,两输入以第二输入为底
tf.maximum(x, y, name=None)返回最大值 (x > y ? x : y)
tf.minimum(x, y, name=None)返回最小值 (x
tf.cos(x, name=None)三角函数cosine
tf.sin(x, name=None)三角函数sine
tf.tan(x, name=None)三角函数tan
tf.atan(x, name=None)三角函数ctan

张量操作Tensor Transformations


  • 数据类型转换Casting

操作描述
tf.string_to_number
(string_tensor, out_type=None, name=None)
字符串转为数字
tf.to_double(x, name=’ToDouble’)转为64位浮点类型–float64
tf.to_float(x, name=’ToFloat’)转为32位浮点类型–float32
tf.to_int32(x, name=’ToInt32’)转为32位整型–int32
tf.to_int64(x, name=’ToInt64’)转为64位整型–int64
tf.cast(x, dtype, name=None)将x或者x.values转换为dtype
# tensor a is [1.8, 2.2], dtype=tf.float
tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32
  

  • 形状操作Shapes and Shaping

操作描述
tf.shape(input, name=None)返回数据的shape
# ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]
tf.size(input, name=None)返回数据的元素数量
# ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12
tf.rank(input, name=None)返回tensor的rank
注意:此rank不同于矩阵的rank,
tensor的rank表示一个tensor需要的索引数目来唯一表示任何一个元素
也就是通常所说的 “order”, “degree”或”ndims”
#’t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
# shape of tensor ‘t’ is [2, 2, 3]
rank(t) ==> 3
tf.reshape(tensor, shape, name=None)改变tensor的形状
# tensor ‘t’ is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor ‘t’ has shape [9]
reshape(t, [3, 3]) ==>
[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
#如果shape有元素[-1],表示在该维度打平至一维
# -1 将自动推导得为 9:
reshape(t, [2, -1]) ==>
[[1, 1, 1, 2, 2, 2, 3, 3, 3],
[4, 4, 4, 5, 5, 5, 6, 6, 6]]
tf.expand_dims(input, dim, name=None)插入维度1进入一个tensor中
#该操作要求-1-input.dims()
# ‘t’ is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1] <= dim <= input.dims()

  • 切片与合并(Slicing and Joining)

操作描述
tf.slice(input_, begin, size, name=None)对tensor进行切片操作
其中size[i] = input.dim_size(i) - begin[i]
该操作要求 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]
#’input’ is
#[[[1, 1, 1], [2, 2, 2]],[[3, 3, 3], [4, 4, 4]],[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==>
[[[3, 3, 3],
[4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==>
[[[3, 3, 3]],
[[5, 5, 5]]]
tf.split(split_dim, num_split, value, name=’split’)沿着某一维度将tensor分离为num_split tensors
# ‘value’ is a tensor with shape [5, 30]
# Split ‘value’ into 3 tensors along dimension 1
split0, split1, split2 = tf.split(1, 3, value)
tf.shape(split0) ==> [5, 10]
tf.concat(concat_dim, values, name=’concat’)沿着某一维度连结tensor
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
如果想沿着tensor一新轴连结打包,那么可以:
tf.concat(axis, [tf.expand_dims(t, axis) for t in tensors])
等同于tf.pack(tensors, axis=axis)
tf.pack(values, axis=0, name=’pack’)将一系列rank-R的tensor打包为一个rank-(R+1)的tensor
# ‘x’ is [1, 4], ‘y’ is [2, 5], ‘z’ is [3, 6]
pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]]
# 沿着第一维pack
pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]
等价于tf.pack([x, y, z]) = np.asarray([x, y, z])
tf.reverse(tensor, dims, name=None)沿着某维度进行序列反转
其中dim为列表,元素为bool型,size等于rank(tensor)
# tensor ‘t’ is
[[[[ 0, 1, 2, 3],
#[ 4, 5, 6, 7],

#[ 8, 9, 10, 11]],
#[[12, 13, 14, 15],
#[16, 17, 18, 19],
#[20, 21, 22, 23]]]]
# tensor ‘t’ shape is [1, 2, 3, 4]
# ‘dims’ is [False, False, False, True]
reverse(t, dims) ==>
[[[[ 3, 2, 1, 0],
[ 7, 6, 5, 4],
[ 11, 10, 9, 8]],
[[15, 14, 13, 12],
[19, 18, 17, 16],
[23, 22, 21, 20]]]]
tf.transpose(a, perm=None, name=’transpose’)调换tensor的维度顺序
按照列表perm的维度排列调换tensor顺序,
如为定义,则perm为(n-1…0)
# ‘x’ is [[1 2 3],[4 5 6]]
tf.transpose(x) ==> [[1 4], [2 5],[3 6]]
# Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4],[2 5], [3 6]]
tf.gather(params, indices, validate_indices=None, name=None)合并索引indices所指示params中的切片
tf.gather
tf.one_hot
(indices, depth, on_value=None, off_value=None,
axis=None, dtype=None, name=None)
indices = [0, 2, -1, 1]
depth = 3
on_value = 5.0
off_value = 0.0
axis = -1
#Then output is [4 x 3]:
output =
[5.0 0.0 0.0] // one_hot(0)
[0.0 0.0 5.0] // one_hot(2)
[0.0 0.0 0.0] // one_hot(-1)
[0.0 5.0 0.0] // one_hot(1)



矩阵相关运算


操作描述
tf.diag(diagonal, name=None)返回一个给定对角值的对角tensor
# ‘diagonal’ is [1, 2, 3, 4]
tf.diag(diagonal) ==>
[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
tf.diag_part(input, name=None)功能与上面相反
tf.trace(x, name=None)求一个2维tensor足迹,即对角值diagonal之和
tf.transpose(a, perm=None, name=’transpose’)调换tensor的维度顺序
按照列表perm的维度排列调换tensor顺序,
如为定义,则perm为(n-1…0)
# ‘x’ is [[1 2 3],[4 5 6]]
tf.transpose(x) ==> [[1 4], [2 5],[3 6]]
# Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4],[2 5], [3 6]]
tf.matmul(a, b, transpose_a=False,
transpose_b=False, a_is_sparse=False,
b_is_sparse=False, name=None)
矩阵相乘
tf.matrix_determinant(input, name=None)返回方阵的行列式
tf.matrix_inverse(input, adjoint=None, name=None)求方阵的逆矩阵,adjoint为True时,计算输入共轭矩阵的逆矩阵
tf.cholesky(input, name=None)对输入方阵cholesky分解,
即把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解A=LL^T
tf.matrix_solve(matrix, rhs, adjoint=None, name=None)求解tf.matrix_solve(matrix, rhs, adjoint=None, name=None)
matrix为方阵shape为[M,M],rhs的shape为[M,K],output为[M,K]



复数操作


操作描述
tf.complex(real, imag, name=None)将两实数转换为复数形式
# tensor ‘real’ is [2.25, 3.25]
# tensor imag is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
tf.complex_abs(x, name=None)计算复数的绝对值,即长度。
# tensor ‘x’ is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]
tf.conj(input, name=None)计算共轭复数
tf.imag(input, name=None)
tf.real(input, name=None)
提取复数的虚部和实部
tf.fft(input, name=None)计算一维的离散傅里叶变换,输入数据类型为complex64



归约计算(Reduction)


操作描述
tf.reduce_sum(input_tensor, reduction_indices=None,
keep_dims=False, name=None)
计算输入tensor元素的和,或者安照reduction_indices指定的轴进行求和
# ‘x’ is [[1, 1, 1]
# [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6
tf.reduce_prod(input_tensor,
reduction_indices=None,
keep_dims=False, name=None)
计算输入tensor元素的乘积,或者安照reduction_indices指定的轴进行求乘积
tf.reduce_min(input_tensor,
reduction_indices=None,
keep_dims=False, name=None)
求tensor中最小值
tf.reduce_max(input_tensor,
reduction_indices=None,
keep_dims=False, name=None)
求tensor中最大值
tf.reduce_mean(input_tensor,
reduction_indices=None,
keep_dims=False, name=None)
求tensor中平均值
tf.reduce_all(input_tensor,
reduction_indices=None,
keep_dims=False, name=None)
对tensor中各个元素求逻辑’与’
# ‘x’ is
# [[True, True]
# [False, False]]
tf.reduce_all(x) ==> False
tf.reduce_all(x, 0) ==> [False, False]
tf.reduce_all(x, 1) ==> [True, False]
tf.reduce_any(input_tensor,
reduction_indices=None,
keep_dims=False, name=None)
对tensor中各个元素求逻辑’或’
tf.accumulate_n(inputs, shape=None,
tensor_dtype=None, name=None)
计算一系列tensor的和
# tensor ‘a’ is [[1, 2], [3, 4]]
# tensor b is [[5, 0], [0, 6]]
tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]
tf.cumsum(x, axis=0, exclusive=False,
reverse=False, name=None)
求累积和
tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
  



分割(Segmentation)


操作描述
tf.segment_sum(data, segment_ids, name=None)根据segment_ids的分段计算各个片段的和
其中segment_ids为一个size与data第一维相同的tensor
其中id为int型数据,最大id不大于size
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
==>[[0 0 0 0]
[5 6 7 8]]
上面例子分为[0,1]两id,对相同id的data相应数据进行求和,
并放入结果的相应id中,
且segment_ids只升不降
tf.segment_prod(data, segment_ids, name=None)根据segment_ids的分段计算各个片段的积
tf.segment_min(data, segment_ids, name=None)根据segment_ids的分段计算各个片段的最小值
tf.segment_max(data, segment_ids, name=None)根据segment_ids的分段计算各个片段的最大值
tf.segment_mean(data, segment_ids, name=None)根据segment_ids的分段计算各个片段的平均值
tf.unsorted_segment_sum(data, segment_ids,
num_segments, name=None)
与tf.segment_sum函数类似,
不同在于segment_ids中id顺序可以是无序的
tf.sparse_segment_sum(data, indices,
segment_ids, name=None)
输入进行稀疏分割求和
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
# Select two rows, one segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))
==> [[0 0 0 0]]
对原data的indices为[0,1]位置的进行分割,
并按照segment_ids的分组进行求和



序列比较与索引提取(Sequence Comparison and Indexing)


操作描述
tf.argmin(input, dimension, name=None)返回input最小值的索引index
tf.argmax(input, dimension, name=None)返回input最大值的索引index
tf.listdiff(x, y, name=None)返回x,y中不同值的索引
tf.where(input, name=None)返回bool型tensor中为True的位置
# ‘input’ tensor is
#[[True, False]
#[True, False]]
# ‘input’ 有两个’True’,那么输出两个坐标值.
# ‘input’的rank为2, 所以每个坐标为具有两个维度.
where(input) ==>
[[0, 0],
[1, 0]]
tf.unique(x, name=None)返回一个元组tuple(y,idx),y为x的列表的唯一化数据列表,
idx为x数据对应y元素的index
# tensor ‘x’ is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
tf.invert_permutation(x, name=None)置换x数据与索引的关系
# tensor x is [3, 4, 0, 2, 1]
invert_permutation(x) ==> [2, 4, 3, 0, 1]



神经网络(Neural Network)


  • 激活函数(Activation Functions)

操作描述
tf.nn.relu(features, name=None)整流函数:max(features, 0)
tf.nn.relu6(features, name=None)以6为阈值的整流函数:min(max(features, 0), 6)
tf.nn.elu(features, name=None)elu函数,exp(features) - 1 if <0,否则features
Exponential Linear Units (ELUs)
tf.nn.softplus(features, name=None)计算softplus:log(exp(features) + 1)
tf.nn.dropout(x, keep_prob,
noise_shape=None, seed=None, name=None)
计算dropout,keep_prob为keep概率
noise_shape为噪声的shape
tf.nn.bias_add(value, bias, data_format=None, name=None)对value加一偏置量
此函数为tf.add的特殊情况,bias仅为一维,
函数通过广播机制进行与value求和,
数据格式可以与value不同,返回为与value相同格式
tf.sigmoid(x, name=None)y = 1 / (1 + exp(-x))
tf.tanh(x, name=None)双曲线切线激活函数

  • 卷积函数(Convolution)

操作描述
tf.nn.conv2d(input, filter, strides, padding,
use_cudnn_on_gpu=None, data_format=None, name=None)
在给定的4D input与 filter下计算2D卷积
输入shape为 [batch, height, width, in_channels]
tf.nn.conv3d(input, filter, strides, padding, name=None)在给定的5D input与 filter下计算3D卷积
输入shape为[batch, in_depth, in_height, in_width, in_channels]

  • 池化函数(Pooling)

操作描述
tf.nn.avg_pool(value, ksize, strides, padding,
data_format=’NHWC’, name=None)
平均方式池化
tf.nn.max_pool(value, ksize, strides, padding,
data_format=’NHWC’, name=None)
最大值方法池化
tf.nn.max_pool_with_argmax(input, ksize, strides,
padding, Targmax=None, name=None)
返回一个二维元组(output,argmax),最大值pooling,返回最大值及其相应的索引
tf.nn.avg_pool3d(input, ksize, strides,
padding, name=None)
3D平均值pooling
tf.nn.max_pool3d(input, ksize, strides,
padding, name=None)
3D最大值pooling

  • 数据标准化(Normalization)

操作描述
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)对维度dim进行L2范式标准化
output = x / sqrt(max(sum(x**2), epsilon))
tf.nn.sufficient_statistics(x, axes, shift=None,
keep_dims=False, name=None)
计算与均值和方差有关的完全统计量
返回4维元组,*元素个数,*元素总和,*元素的平方和,*shift结果
参见算法介绍
tf.nn.normalize_moments(counts, mean_ss, variance_ss, shift, name=None)基于完全统计量计算均值和方差
tf.nn.moments(x, axes, shift=None,
name=None, keep_dims=False)
直接计算均值与方差

  • 损失函数(Losses)

操作描述
tf.nn.l2_loss(t, name=None)output = sum(t ** 2) / 2

  • 分类函数(Classification)

操作描述
tf.nn.sigmoid_cross_entropy_with_logits
(logits, targets, name=None)*
计算输入logits, targets的交叉熵
tf.nn.softmax(logits, name=None)计算softmax
softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))
tf.nn.log_softmax(logits, name=None)logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
tf.nn.softmax_cross_entropy_with_logits
(logits, labels, name=None)
计算logits和labels的softmax交叉熵
logits, labels必须为相同的shape与数据类型
tf.nn.sparse_softmax_cross_entropy_with_logits
(logits, labels, name=None)
计算logits和labels的softmax交叉熵
tf.nn.weighted_cross_entropy_with_logits
(logits, targets, pos_weight, name=None)
与sigmoid_cross_entropy_with_logits()相似,
但给正向样本损失加了权重pos_weight

  • 符号嵌入(Embeddings)

操作描述
tf.nn.embedding_lookup
(params, ids, partition_strategy=’mod’,
name=None, validate_indices=True)
根据索引ids查询embedding列表params中的tensor值
如果len(params) > 1,id将会安照partition_strategy策略进行分割
1、如果partition_strategy为”mod”,
id所分配到的位置为p = id % len(params)
比如有13个ids,分为5个位置,那么分配方案为:
[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]
2、如果partition_strategy为”div”,那么分配方案为:
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]
tf.nn.embedding_lookup_sparse(params,
sp_ids, sp_weights, partition_strategy=’mod’,
name=None, combiner=’mean’)
对给定的ids和权重查询embedding
1、sp_ids为一个N x M的稀疏tensor,
N为batch大小,M为任意,数据类型int64
2、sp_weights的shape与sp_ids的稀疏tensor权重,
浮点类型,若为None,则权重为全’1’

  • 循环神经网络(Recurrent Neural Networks)

操作描述
tf.nn.rnn(cell, inputs, initial_state=None, dtype=None,
sequence_length=None, scope=None)
基于RNNCell类的实例cell建立循环神经网络
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None,
initial_state=None, dtype=None, parallel_iteratiOns=None,
swap_memory=False, time_major=False, scope=None)
基于RNNCell类的实例cell建立动态循环神经网络
与一般rnn不同的是,该函数会根据输入动态展开
返回(outputs,state)
tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name,
sequence_length=None, scope=None)
可储存调试状态的RNN网络
tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs,
initial_state_fw=None, initial_state_bw=None, dtype=None,
sequence_length=None, scope=None)
双向RNN, 返回一个3元组tuple
(outputs, output_state_fw, output_state_bw)

  • 求值网络(Evaluation)

操作描述
tf.nn.top_k(input, k=1, sorted=True, name=None)返回前k大的值及其对应的索引
tf.nn.in_top_k(predictions, targets, k, name=None)返回判断是否targets索引的predictions相应的值
是否在在predictions前k个位置中,
返回数据类型为bool类型,len与predictions同

  • 监督候选采样网络(Candidate Sampling)

对于有巨大量的多分类与多标签模型,如果使用全连接softmax将会占用大量的时间与空间资源,所以采用候选采样方法仅使用一小部分类别与标签作为监督以加速训练。


操作描述
Sampled Loss Functions 
tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled,
num_classes, num_true=1, sampled_values=None,
remove_accidental_hits=False, partition_strategy=’mod’,
name=’nce_loss’)
返回noise-contrastive的训练损失结果
tf.nn.sampled_softmax_loss(weights, biases, inputs, labels,
num_sampled, num_classes, num_true=1, sampled_values=None,
remove_accidental_hits=True, partition_strategy=’mod’,
name=’sampled_softmax_loss’)
返回sampled softmax的训练损失
参考- Jean et al., 2014第3部分
Candidate Samplers 
tf.nn.uniform_candidate_sampler(true_classes, num_true,
num_sampled, unique, range_max, seed=None, name=None)
通过均匀分布的采样集合
返回三元tuple
1、sampled_candidates 候选集合。
2、期望的true_classes个数,为浮点值
3、期望的sampled_candidates个数,为浮点值
tf.nn.log_uniform_candidate_sampler(true_classes, num_true,
num_sampled, unique, range_max, seed=None, name=None)
通过log均匀分布的采样集合,返回三元tuple
tf.nn.learned_unigram_candidate_sampler
(true_classes, num_true, num_sampled, unique,
range_max, seed=None, name=None)
根据在训练过程中学习到的分布状况进行采样
返回三元tuple
tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true,
num_sampled, unique, range_max, vocab_file=”,
distortion=1.0, num_reserved_ids=0, num_shards=1,
shard=0, unigrams=(), seed=None, name=None)
基于所提供的基本分布进行采样

保存与恢复变量


操作描述
类tf.train.Saver(Saving and Restoring Variables) 
tf.train.Saver.__init__(var_list=None, reshape=False,
sharded=False, max_to_keep=5,
keep_checkpoint_every_n_hours=10000.0,
name=None, restore_sequentially=False,
saver_def=None, builder=None)
创建一个存储器Saver
var_list定义需要存储和恢复的变量
tf.train.Saver.save(sess, save_path, global_step=None,
latest_filename=None, meta_graph_suffix=’meta’,
write_meta_graph=True)
保存变量
tf.train.Saver.restore(sess, save_path)恢复变量
tf.train.Saver.last_checkpoints列出最近未删除的checkpoint 文件名
tf.train.Saver.set_last_checkpoints(last_checkpoints)设置checkpoint文件名列表
tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time)设置checkpoint文件名列表和时间戳









推荐阅读
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文介绍了UVALive6575题目Odd and Even Zeroes的解法,使用了数位dp和找规律的方法。阶乘的定义和性质被介绍,并给出了一些例子。其中,部分阶乘的尾零个数为奇数,部分为偶数。 ... [详细]
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • 前景:当UI一个查询条件为多项选择,或录入多个条件的时候,比如查询所有名称里面包含以下动态条件,需要模糊查询里面每一项时比如是这样一个数组条件:newstring[]{兴业银行, ... [详细]
  • 本文讨论了一个数列求和问题,该数列按照一定规律生成。通过观察数列的规律,我们可以得出求解该问题的算法。具体算法为计算前n项i*f[i]的和,其中f[i]表示数列中有i个数字。根据参考的思路,我们可以将算法的时间复杂度控制在O(n),即计算到5e5即可满足1e9的要求。 ... [详细]
  • Python的参数解析argparse模块的学习
    本文介绍了Python中参数解析的重要模块argparse的学习内容。包括位置参数和可选参数的定义和使用方式,以及add_argument()函数的详细参数关键字解释。同时还介绍了命令行参数的操作和可接受数量的设置,其中包括整数类型的参数。通过学习本文内容,可以更好地理解和使用argparse模块进行参数解析。 ... [详细]
  • 本文介绍了SPOJ2829题目的解法及优化方法。题目要求找出满足一定条件的数列,并对结果取模。文章详细解释了解题思路和算法实现,并提出了使用FMT优化的方法。最后,对于第三个限制条件,作者给出了处理方法。文章最后给出了代码实现。 ... [详细]
  • Python中的PyInputPlus模块原文:https ... [详细]
  • C++ STL复习(13)容器适配器
    STL提供了3种容器适配器,分别为stack栈适配器、queue队列适配器以及priority_queue优先权队列适配器。不同场景下,由于不同的序列式 ... [详细]
  • LwebandStringTimeLimit:20001000MS(JavaOthers)MemoryLimit:6553665536K(JavaO ... [详细]
  • Webpack5内置处理图片资源的配置方法
    本文介绍了在Webpack5中处理图片资源的配置方法。在Webpack4中,我们需要使用file-loader和url-loader来处理图片资源,但是在Webpack5中,这两个Loader的功能已经被内置到Webpack中,我们只需要简单配置即可实现图片资源的处理。本文还介绍了一些常用的配置方法,如匹配不同类型的图片文件、设置输出路径等。通过本文的学习,读者可以快速掌握Webpack5处理图片资源的方法。 ... [详细]
  • 如何优化Webpack打包后的代码分割
    本文介绍了如何通过优化Webpack的代码分割来减小打包后的文件大小。主要包括拆分业务逻辑代码和引入第三方包的代码、配置Webpack插件、异步代码的处理、代码分割重命名、配置vendors和cacheGroups等方面的内容。通过合理配置和优化,可以有效减小打包后的文件大小,提高应用的加载速度。 ... [详细]
  • 获取时间的函数js代码,js获取时区代码
    本文目录一览:1、js获取服务器时间(动态)2 ... [详细]
author-avatar
噬天1986
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有