热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

TensorFlow技术解析与实战12图像与语音的结合

  实现人工智能要有3个要素:语法、语义和推理  语音和视觉是人工智能界非常关注的点,也就是说,在语言和视觉层面,通过语法(对语言来说是语法解析,对视觉来说是三维结构的解析)和语义

    实现人工智能要有3个要素:语法、语义和推理

    语音和视觉是人工智能界非常关注的点,也就是说,在语言和视觉层面,通过语法(对语言来说是语法解析,对视觉来说是三维结构的解析)和语义(对语言来说是语义,对视觉来说是物体动作的含义)作为模型的输入训练数据,最终实现推理的能力,也就是把训练中学习到的能力应用到工作中去,从新的数据中推断出结论。

12.1 看图说话模型

     输入一张图片,希望我们训练的看图说话模型能够根据图像给出描述图像内容的自然语言,讲出一个故事。这是一个很大的挑战,因为这需要在图像信息和文本信息这两种不同形式的信息之间进行“翻译”。

     Tensorflow官方模型https://github.com/tensorflow/models/tree/master/im2txt

TensorFlow技术解析与实战 12 图像与语音的结合

原理:采用编码器-解码器框架,先将图像编码成固定的中间矢量,然后解码成自然语言的描述。这里编码器采用的是Inception V3图像识别模型,解码器采用的是LSTM网络

TensorFlow技术解析与实战 12 图像与语音的结合

   {s0, s1, ..., sn-1}是字幕的词,{weS0, weS1, ..., weSn-1}是它们对应的词嵌入向量,LSTM的输出{p1, p2, ..., pn}是由句子中的下一个词生成的概率分布。{logP1(S1), logP2(S2), ... ,logPn(Sn)}是正确词在每一个步骤的对数似然,这几个值的总和取负数是我们模型的最小化目标。

   Microsoft COCO Caption数据集http://mscoco.org/





推荐阅读
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 优化后的标题:深入探讨网关安全:将微服务升级为OAuth2资源服务器的最佳实践
    本文深入探讨了如何将微服务升级为OAuth2资源服务器,以订单服务为例,详细介绍了在POM文件中添加 `spring-cloud-starter-oauth2` 依赖,并配置Spring Security以实现对微服务的保护。通过这一过程,不仅增强了系统的安全性,还提高了资源访问的可控性和灵活性。文章还讨论了最佳实践,包括如何配置OAuth2客户端和资源服务器,以及如何处理常见的安全问题和错误。 ... [详细]
  • 中国学者实现 CNN 全程可视化,详尽展示每次卷积、ReLU 和池化过程 ... [详细]
  • 在List和Set集合中存储Object类型的数据元素 ... [详细]
  • SSL 错误:目标主机名与备用证书主题名称不匹配
    在使用 `git clone` 命令时,常见的 SSL 错误表现为:无法访问指定的 HTTPS 地址(如 `https://ip_or_domain/xxxx.git`),原因是目标主机名与备用证书主题名称不匹配。这通常是因为服务器的 SSL 证书配置不正确或客户端的证书验证设置有问题。建议检查服务器的 SSL 证书配置,确保其包含正确的主机名,并确认客户端的证书信任库已更新。此外,可以通过临时禁用 SSL 验证来排查问题,但请注意这会降低安全性。 ... [详细]
  • C++ 开发实战:实用技巧与经验分享
    C++ 开发实战:实用技巧与经验分享 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 本文介绍了 Vue 开发的入门指南,重点讲解了开发环境的配置与项目的基本搭建。推荐使用 WebStorm 作为 IDE,其下载地址为 。安装时请选择适合您操作系统的版本,并通过 获取激活码。WebStorm 是前端开发者的理想选择,提供了丰富的功能和强大的代码编辑能力。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 深入浅出解读奇异值分解,助你轻松掌握核心概念 ... [详细]
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
  • 2018年热门趋势:轻松几步构建高效智能聊天机器人
    2018年,构建高效智能聊天机器人的简易步骤成为行业焦点。作为AI领域的关键应用,聊天机器人不仅被视为企业市场智能化转型的重要工具,也是技术变现的主要途径之一。随着自然语言处理技术的不断进步,越来越多的企业开始重视并投资于这一领域,以期通过聊天机器人提升客户服务体验和运营效率。 ... [详细]
  • 每日一书丨AI圣经《深度学习》作者斩获2018年图灵奖
    2019年3月27日——ACM宣布,深度学习之父YoshuaBengio,YannLeCun,以及GeoffreyHinton获得了2018年的图灵奖, ... [详细]
  • 深度学习中的Vision Transformer (ViT)详解
    本文详细介绍了深度学习中的Vision Transformer (ViT)方法。首先介绍了相关工作和ViT的基本原理,包括图像块嵌入、可学习的嵌入、位置嵌入和Transformer编码器等。接着讨论了ViT的张量维度变化、归纳偏置与混合架构、微调及更高分辨率等方面。最后给出了实验结果和相关代码的链接。本文的研究表明,对于CV任务,直接应用纯Transformer架构于图像块序列是可行的,无需依赖于卷积网络。 ... [详细]
  • 「爆干7天7夜」入门AI人工智能学习路线一条龙,真的不能再透彻了
    前言应广大粉丝要求,今天迪迦来和大家讲解一下如何去入门人工智能,也算是迪迦对自己学习人工智能这么多年的一个总结吧,本条学习路线并不会那么 ... [详细]
author-avatar
君慎豫行
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有