热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

算法系列15天速成第三天七大经典排序【下】

今天跟大家聊聊最后三种排序:直接插入排序,希尔排序和归并排序

直接插入排序:

       这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,

   扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的。

       最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,

   第五张牌又是3,狂喜,哈哈,一门炮就这样产生了。

     怎么样,生活中处处都是算法,早已经融入我们的生活和血液。     

     下面就上图说明:             

      看这张图不知道大家可否理解了,在插入排序中,数组会被划分为两种,“有序数组块”和“无序数组块”,  

      对的,第一遍的时候从”无序数组块“中提取一个数20作为有序数组块。

     第二遍的时候从”无序数组块“中提取一个数60有序的放到”有序数组块中“,也就是20,60。

     第三遍的时候同理,不同的是发现10比有序数组的值都小,因此20,60位置后移,腾出一个位置让10插入。

     然后按照这种规律就可以全部插入完毕。

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace InsertSort
{
    public class Program
    {
        static void Main(string[] args)
        {
            List list = new List() { 3, 1, 2, 9, 7, 8, 6 };

            Console.WriteLine("排序前:" + string.Join(",", list));

            InsertSort(list);

            Console.WriteLine("排序后:" + string.Join(",", list));
        }

        static void InsertSort(List list)
        {
            //无须序列
            for (int i = 1; i             {
                var temp = list[i];

                int j;

                //有序序列
                for (j = i - 1; j >= 0 && temp                 {
                    list[j + 1] = list[j];
                }
                list[j + 1] = temp;
            }
        }
    }
}

希尔排序:

        观察一下”插入排序“:其实不难发现她有个缺点:

              如果当数据是”5, 4, 3, 2, 1“的时候,此时我们将“无序块”中的记录插入到“有序块”时,估计俺们要崩盘,

       每次插入都要移动位置,此时插入排序的效率可想而知。   

      shell根据这个弱点进行了算法改进,融入了一种叫做“缩小增量排序法”的思想,其实也蛮简单的,不过有点注意的就是:

  增量不是乱取,而是有规律可循的。

首先要明确一下增量的取法:

      第一次增量的取法为: d=count/2;

      第二次增量的取法为:  d=(count/2)/2;

      最后一直到: d=1;

看上图观测的现象为:

        d=3时:将40跟50比,因50大,不交换。

                   将20跟30比,因30大,不交换。

                   将80跟60比,因60小,交换。

        d=2时:将40跟60比,不交换,拿60跟30比交换,此时交换后的30又比前面的40小,又要将40和30交换,如上图。

                   将20跟50比,不交换,继续将50跟80比,不交换。

        d=1时:这时就是前面讲的插入排序了,不过此时的序列已经差不多有序了,所以给插入排序带来了很大的性能提高。

既然说“希尔排序”是“插入排序”的改进版,那么我们就要比一下,在1w个数字中,到底能快多少?

下面进行一下测试:

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;

namespace ShellSort
{
    public class Program
    {
        static void Main(string[] args)
        {
            //5次比较
            for (int i = 1; i <= 5; i++)
            {
                List list = new List();

                //插入1w个随机数到数组中
                for (int j = 0; j <10000; j++)
                {
                    Thread.Sleep(1);
                    list.Add(new Random((int)DateTime.Now.Ticks).Next(10000, 1000000));
                }

                List list2 = new List();
                list2.AddRange(list);

                Console.WriteLine("\n第" + i + "次比较:");

                Stopwatch watch = new Stopwatch();

                watch.Start();
                InsertSort(list);
                watch.Stop();

                Console.WriteLine("\n插入排序耗费的时间:" + watch.ElapsedMilliseconds);
                Console.WriteLine("输出前十个数:" + string.Join(",", list.Take(10).ToList()));

                watch.Restart();
                ShellSort(list2);
                watch.Stop();

                Console.WriteLine("\n希尔排序耗费的时间:" + watch.ElapsedMilliseconds);
                Console.WriteLine("输出前十个数:" + string.Join(",", list2.Take(10).ToList()));

            }
        }

        ///


/// 希尔排序
///

///
        static void ShellSort(List list)
        {
            //取增量
            int step = list.Count / 2;

            while (step >= 1)
            {
                //无须序列
                for (int i = step; i                 {
                    var temp = list[i];

                    int j;

                    //有序序列
                    for (j = i - step; j >= 0 && temp                     {
                        list[j + step] = list[j];
                    }
                    list[j + step] = temp;
                }
                step = step / 2;
            }
        }

        ///


/// 插入排序
///

///
        static void InsertSort(List list)
        {
            //无须序列
            for (int i = 1; i             {
                var temp = list[i];

                int j;

                //有序序列
                for (j = i - 1; j >= 0 && temp                 {
                    list[j + 1] = list[j];
                }
                list[j + 1] = temp;
            }
        }
    }
}

截图如下:

 

看的出来,希尔排序优化了不少,w级别的排序中,相差70几倍哇。

归并排序:

       个人感觉,我们能容易看的懂的排序基本上都是O (n^2),比较难看懂的基本上都是N(LogN),所以归并排序也是比较难理解的,尤其是在代码

 编写上,本人就是搞了一下午才搞出来,嘻嘻。

首先看图:

归并排序中中两件事情要做:

            第一: “分”,  就是将数组尽可能的分,一直分到原子级别。

            第二: “并”,将原子级别的数两两合并排序,最后产生结果。

代码:

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MergeSort
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] array = { 3, 2, 1, 8, 9, 0 };

            MergeSort(array, new int[array.Length], 0, array.Length - 1);

            Console.WriteLine(string.Join(",", array));
        }

        ///


/// 数组的划分
///

///待排序数组
///临时存放数组
///序列段的开始位置,
///序列段的结束位置
        static void MergeSort(int[] array, int[] temparray, int left, int right)
        {
            if (left             {
                //取分割位置
                int middle = (left + right) / 2;

                //递归划分数组左序列
                MergeSort(array, temparray, left, middle);

                //递归划分数组右序列
                MergeSort(array, temparray, middle + 1, right);

                //数组合并操作
                Merge(array, temparray, left, middle + 1, right);
            }
        }

        ///


/// 数组的两两合并操作
///

///待排序数组
///临时数组
///第一个区间段开始位置
///第二个区间的开始位置
///第二个区间段结束位置
        static void Merge(int[] array, int[] temparray, int left, int middle, int right)
        {
            //左指针尾
            int leftEnd = middle - 1;

            //右指针头
            int rightStart = middle;

            //临时数组的下标
            int tempIndex = left;

            //数组合并后的length长度
            int tempLength = right - left + 1;

            //先循环两个区间段都没有结束的情况
            while ((left <= leftEnd) && (rightStart <= right))
            {
                //如果发现有序列大,则将此数放入临时数组
                if (array[left]                     temparray[tempIndex++] = array[left++];
                else
                    temparray[tempIndex++] = array[rightStart++];
            }

            //判断左序列是否结束
            while (left <= leftEnd)
                temparray[tempIndex++] = array[left++];

            //判断右序列是否结束
            while (rightStart <= right)
                temparray[tempIndex++] = array[rightStart++];

            //交换数据
            for (int i = 0; i             {
                array[right] = temparray[right];
                right--;
            }
        }
    }
}

结果图:

ps: 插入排序的时间复杂度为:O(N^2)

     希尔排序的时间复杂度为:平均为:O(N^3/2)

                                       最坏: O(N^2)

     归并排序时间复杂度为: O(NlogN)

                空间复杂度为:  O(N) 


推荐阅读
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
author-avatar
job2672488
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有