热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

广度优先遍历(BFS)算法的概述、代码实现和应用

本文介绍了广度优先遍历(BFS)算法的概述、邻接矩阵和邻接表的代码实现,并讨论了BFS在求解最短路径或最短步数问题上的应用。以LeetCode中的934.最短的桥为例,详细阐述了BFS的具体思路和代码实现。最后,推荐了一些相关的BFS算法题目供大家练习。


目录


  • 1.概述
  • 2.代码实现
  • 3.应用



1.概述

(1)广度优先遍历 (Breadth First Search),又称宽度优先遍历,是最简便的图的搜索算法之一。

(2)已知图 G = (V, E) 和一个源顶点 start,宽度优先搜索以一种系统的方式探寻 G 的边,从而“发现” start 所能到达的所有顶点,并计算 start 到所有这些顶点的距离(最少边数),该算法同时能生成一棵根为 start 且包括所有可达顶点的广度优先树。对从 start 可达的任意顶点 v,广度优先树中从 start 到 v 的路径对应于图 G 中从 start 到 v 的最短路径,即包含最小边数的路径。该算法对有向图无向图同样适用。

(3)之所以称之为广度优先遍历,是因为算法自始至终一直通过已找到和未找到顶点之间的边界向外扩展,就是说,算法首先搜索和 start 距离为 k 的所有顶点,然后再去搜索和 start 距离为 k + 1 的其他顶点。


2.代码实现

(1)当使用邻接矩阵来表示图时,其代码实现如下:

class Solution {
/*
adjMatrix 为邻接矩阵,adjMatrix[i][j] = 0 表示节点 i 和 j 之间没有边直接相连
start 为遍历的起点
*/

public static void bfs(int[][] adjMatrix, int start) {
// n 表示图中的节点数量,节点编号为 0 ~ n - 1
int n = adjMatrix.length;
//定义 visited 数组,防止对节点进行重复遍历
boolean[] visited = new boolean[n];
Queue<Integer> queue &#61; new LinkedList<>();
if (start < 0 || start > n - 1) {
System.out.println("起点编号应为 [0, " &#43; (n - 1) &#43; "] 之间的整数&#xff01;");
return;
}
//起点入队
queue.offer(start);
//标记起点
visited[start] &#61; true;
System.out.print(start &#43; " ");
while (!queue.isEmpty()) {
int node &#61; queue.poll();
//将与节点 node 相连的节点加入到 queue 中
for (int i &#61; 0; i < n; i&#43;&#43;) {
if (adjMatrix[node][i] !&#61; 0 && !visited[i]) {
System.out.print(i &#43; " ");
visited[i] &#61; true;
queue.offer(i);
}
}
}
}
}

&#xff08;2&#xff09;当使用邻接表来表示图时&#xff0c;其代码实现如下&#xff1a;

class Solution {
/*
adjList 为邻接表&#xff0c;adjList[i] 中存储与节点 i 相邻的节点
start 为遍历的起点
*/

public static void bfs(List<Integer>[] adjList, int start) {
// n 表示图中的节点数量&#xff0c;节点编号为 0 ~ n - 1
int n &#61; adjList.length;
//定义 visited 数组&#xff0c;防止对节点进行重复遍历
boolean[] visited &#61; new boolean[n];
Queue<Integer> queue &#61; new LinkedList<>();
if (start < 0 || start > n - 1) {
System.out.println("起点编号应为 [0, " &#43; (n - 1) &#43; "] 之间的整数&#xff01;");
return;
}
//起点入队
queue.offer(start);
//标记起点
visited[start] &#61; true;
System.out.print(start &#43; " ");
while (!queue.isEmpty()) {
int node &#61; queue.poll();
//将与节点 node 相连的节点加入到 queue 中
for (int nextNode : adjList[node]) {
while (!visited[nextNode]) {
System.out.print(nextNode &#43; " ");
visited[nextNode] &#61; true;
queue.offer(nextNode);
}
}
}
}
}

&#xff08;3&#xff09;下面以图 G 为例来说明&#xff1a;

在这里插入图片描述

① 构造邻接矩阵&#xff1a;

int[][] adjMatrix &#61; {
{0, 1, 1, 0, 1},
{1, 0, 0, 1, 1},
{1, 0, 0, 0, 1},
{0, 1, 0, 0, 1},
{1, 1, 1, 1, 0}
};

② 构造邻接表&#xff1a;

int n &#61; 5;
List<Integer>[] adjList &#61; new ArrayList[n];
for (int i &#61; 0; i < n; i&#43;&#43;) {
adjList[i] &#61; new ArrayList<>();
}
adjList[0].add(1);
adjList[0].add(2);
adjList[0].add(4);
adjList[1].add(0);
adjList[1].add(3);
adjList[1].add(4);
adjList[2].add(0);
adjList[2].add(4);
adjList[3].add(1);
adjList[3].add(4);
adjList[4].add(0);
adjList[4].add(1);

如果 start &#61; 2&#xff0c;那么遍历的节点依次为&#xff1a;

2 0 4 1 3

遍历过程如下图所示&#xff1a;
在这里插入图片描述

&#xff08;4&#xff09;无论是邻接表还是邻接矩阵的存储方式&#xff0c;BFS 算法都需要借助一个辅助队列 queue&#xff0c;n 个顶点均需入队一次&#xff0c;在最坏的情况下&#xff0c;空间复杂度为 O(|V|)&#xff0c;而时间复杂度与图的存储方式有关&#xff1a;


  • 采用邻接矩阵存储方式时&#xff0c;查找每个顶点的邻接点所需的时间为O(|V|)&#xff0c;故算法总的时间复杂度为 O(|V|2)&#xff1b;
  • 采用邻接表存储方式时&#xff0c;每个顶点均需搜索一次(或入队一次)&#xff0c;故时间复杂度为 O(|V|)&#xff0c;在搜索任一顶点的邻接点时&#xff0c;每条边至少访问一次&#xff0c;故时间复杂度为 O(|E|)&#xff0c;算法总的时间复杂度为 O(|V| &#43; |E|)&#xff1b;

3.应用

&#xff08;1&#xff09;除了对图进行遍历以外&#xff0c;BFS 在求解最短路径或者最短步数上有很多的应用。

&#xff08;2&#xff09;LeetCode 中的934.最短的桥这题便是对 BFS 的应用&#xff1a;

在这里插入图片描述

思路如下&#xff1a;
① 通过遍历找到数组 grid 中的 1 后进行广度优先搜索&#xff0c;此时可以得到第一座岛的位置集合&#xff0c;记为 island&#xff0c;并将其位置全部标记为 −1。
② 从 island 中的所有位置开始进行 BFS&#xff0c;当它们到达了任意的 1 时&#xff0c;即表示搜索到了第二个岛&#xff0c;搜索的层数就是答案。

代码实现如下&#xff1a;

class Solution {
public int shortestBridge(int[][] grid) {
int n &#61; grid.length;
// dirs 记录遍历的四个方向
int[][] dirs &#61; {{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
List<int[]> island &#61; new ArrayList<>();
Queue<int[]> queue &#61; new ArrayDeque<>();
for (int i &#61; 0; i < n; i&#43;&#43;) {
for (int j &#61; 0; j < n; j&#43;&#43;) {
if (grid[i][j] &#61;&#61; 1) {
queue.offer(new int[]{i, j});
grid[i][j] &#61; -1;
while (!queue.isEmpty()) {
int[] land &#61; queue.poll();
int x &#61; land[0];
int y &#61; land[1];
island.add(land);
for (int k &#61; 0; k < 4; k&#43;&#43;) {
int nextX &#61; x &#43; dirs[k][0];
int nextY &#61; y &#43; dirs[k][1];
if (nextX >&#61; 0 && nextY >&#61; 0 && nextX < n && nextY < n && grid[nextX][nextY] &#61;&#61; 1) {
queue.offer(new int[]{nextX, nextY});
//标记 (nextX, nextY)&#xff0c;表示已经访问过该点
grid[nextX][nextY] &#61; -1;
}
}
}
/*
(1) 此时已经找到了题目中描述的两座岛中的一座&#xff0c;并且组成岛的每块陆地的坐标位置都保存在 island 中。
(2) 从 island 中的所有坐标位置开始进行 BFS&#xff0c;当它们达到了任意的 1 时&#xff0c;即表示搜索到了第二座岛&#xff0c;
此时搜索的层数即为答案&#xff0c;在下面的代码中使用 step 来记录。
*/

for (int[] land : island) {
queue.offer(land);
}
int step &#61; 0;
while (!queue.isEmpty()) {
int size &#61; queue.size();
for (int k &#61; 0; k < size; k&#43;&#43;) {
int[] land &#61; queue.poll();
int x &#61; land[0];
int y &#61; land[1];
for (int d &#61; 0; d < 4; d&#43;&#43;) {
int nextX &#61; x &#43; dirs[d][0];
int nextY &#61; y &#43; dirs[d][1];
if (nextX >&#61; 0 && nextY >&#61; 0 && nextX < n && nextY < n) {
if (grid[nextX][nextY] &#61;&#61; 0) {
queue.offer(new int[]{nextX, nextY});
//标记 (nextX, nextY)&#xff0c;表示已经访问过该点
grid[nextX][nextY] &#61; -1;
} else if (grid[nextX][nextY] &#61;&#61; 1) {
return step;
}
}
}
}
step&#43;&#43;;
}
}
}
}
return 0;
}
}

&#xff08;3&#xff09;大家可以去 LeetCode 上找相关的 BFS 的题目来练习&#xff0c;或者也可以直接查看LeetCode算法刷题目录&#xff08;Java&#xff09;这篇文章中的 BFS 章节。如果大家发现文章中的错误之处&#xff0c;可在评论区中指出。







推荐阅读
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • Python第三方库安装的多种途径及注意事项
    本文详细介绍了Python第三方库的几种常见安装方法,包括使用pip命令、集成开发环境(如Anaconda)以及手动文件安装,并提供了每种方法的具体操作步骤和适用场景。 ... [详细]
  • 本文探讨了如何在iOS开发环境中,特别是在Xcode 6.1中,设置和应用自定义文本样式。我们将详细介绍实现方法,并提供一些实用的技巧。 ... [详细]
  • 深入理解Lucene搜索机制
    本文旨在帮助读者全面掌握Lucene搜索的编写步骤、核心API及其应用。通过详细解析Lucene的基本查询和查询解析器的使用方法,结合架构图和代码示例,带领读者深入了解Lucene搜索的工作流程。 ... [详细]
  • 深入解析for与foreach遍历集合时的性能差异
    本文将详细探讨for循环和foreach(迭代器)在遍历集合时的性能差异,并通过实际代码示例和源码分析,帮助读者理解这两种遍历方式的不同之处。文章内容丰富且专业,旨在为编程爱好者提供有价值的参考。 ... [详细]
  • 中科院学位论文排版指南
    随着毕业季的到来,许多即将毕业的学生开始撰写学位论文。本文介绍了使用LaTeX排版学位论文的方法,特别是针对中国科学院大学研究生学位论文撰写规范指导意见的最新要求。LaTeX以其精确的控制和美观的排版效果成为许多学者的首选。 ... [详细]
  • 本文详细介绍了如何在预装Ubuntu系统的笔记本电脑上安装Windows 7。针对没有光驱的情况,提供了通过USB安装的具体方法,并解决了分区、驱动器无法识别等问题。 ... [详细]
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
  • Nginx 反向代理与负载均衡实验
    本实验旨在通过配置 Nginx 实现反向代理和负载均衡,确保从北京本地代理服务器访问上海的 Web 服务器时,能够依次显示红、黄、绿三种颜色页面以验证负载均衡效果。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 探讨如何修复Visual Studio Code中JavaScript的智能感知和自动完成功能在特定场景下无法正常工作的问题,包括配置检查、语言模式选择以及类型注释的使用。 ... [详细]
  • Java项目分层架构设计与实践
    本文探讨了Java项目中应用分层的最佳实践,不仅介绍了常见的三层架构(Controller、Service、DAO),还深入分析了各层的职责划分及优化建议。通过合理的分层设计,可以提高代码的可维护性、扩展性和团队协作效率。 ... [详细]
  • 本文详细介绍了如何在PHP中进行数组删除、清空等操作,并提供了在Visual Studio Code中创建PHP文件的步骤。 ... [详细]
author-avatar
荷塘一只嫩藕
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有