热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Stanford机器学习第九讲.聚类

原文:http:blog.csdn.netabcjenniferarticledetails7914952本栏目(Machinelearning)包括单参数的线性回归、多参数的线性

原文:http://blog.csdn.net/abcjennifer/article/details/7914952

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中Andrew老师的讲解和其他书籍的借鉴。(https://class.coursera.org/ml/class/index)

第九讲. 聚类——Clustering

 

===============================

(一)、什么是无监督学习?

(二)、KMeans聚类算法

(三)、Cluster问题的(distortion)cost function

(四)、如何选择初始化时的类中心

(五)、聚类个数的选择

=====================================

(一)、什么是无监督学习


之前的几章我们只涉及到有监督学习,本章中,我们通过讨论另一种Machine learning方式:无监督学习。首先呢,我们来看一下有监督学习与无监督学习的区别。

给定一组数据(input,target)为Z=(X,Y)。

有监督学习:最常见的是regression & classification。

  • regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。

技术分享

  • classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

技术分享,其中fi(X)=P(Y=i | X);

技术分享

无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.

  • density estimation就是密度估计,估计该数据在任意位置的分布密度
  • clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。
  • PCA和很多deep learning算法都属于无监督学习。

好了,大家理解了吧,unsupervised learning也就是不带类标号的机器学习。

练习:

技术分享

=====================================

(二)、K-Means聚类算法

KMeans是聚类算法的一种,先来直观的看一下该算法是怎样聚类的。给定一组数据如下图所示,K-Means算法的聚类流程如图:

技术分享

技术分享

图中显示了Kmeans聚类过程,给定一组输入数据{x(1),x(2),...,x(n)}和预分类数k,算法如下:

技术分享

首先随机指定k个类的中心U1~Uk,然后迭代地更新该centroid。

其中,C(i)表示第i个数据离那个类中心最近,也就是将其判定为属于那个类,然后将这k各类的中心分别更新为所有属于这个类的数据的平均值。

  

=====================================

(三)、Cluster问题的(distortion)cost function

在supervised learning中我们曾讲过cost function,类似的,在K-means算法中同样有cost function,我们有时称其为distortion cost function.

如下图所示,J(C,U)就是我们要minimize的function.

技术分享

即最小化所有数据与其聚类中心的欧氏距离和。

再看上一节中我们讲过的KMeans算法流程,第一步为固定类中心U,优化C的过程:

技术分享

第二步为优化U的过程:

技术分享

这样进行迭代,就可以完成cost function J的优化。

练习:

技术分享

这里大家注意,回归问题中有可能因为学习率设置过大产生随着迭代次数增加,cost function反倒增大的情况。但聚类是不会产生这样的问题的,因为每一次聚类都保证了使J下降,且无学习率做参数。

=====================================

(四)、如何选择初始化时的类中心

在上面的kmeans算法中,我们提到可以用randomly的方法选择类中心,然而有时效果并不是非常好,如下图所示:

技术分享

fig.1. original data

对于上图的这样一组数据,如果我们幸运地初始化类中心如图2,

技术分享

fig.2. lucky initialization

技术分享

fig.3. unfortunate initialization

但如果将数据初始化中心选择如图3中的两种情况,就悲剧了!最后的聚类结果cost function也会比较大。针对这个问题,我们提出的solution是,进行不同initialization(50~1000次),每一种initialization的情况分别进行聚类,最后选取cost function J(C,U)最小的作为聚类结果。

 

=====================================

(五)、聚类个数的选择

How to choose the number of clusters? 这应该是聚类问题中一个头疼的part,比如KMeans算法中K的选择。本节就来解决这个问题。

最著名的一个方法就是elbow-method,做图k-J(cost function)如下:

技术分享

若做出的图如上面左图所示,那么我们就找图中的elbow位置作为k的选定值,如果像右图所示并无明显的elbow点呢,大概就是下图所示的数据分布:

技术分享

这种情况下需要我们根据自己的需求来进行聚类,比如Tshirt的size,可以聚成{L,M,S}三类,也可以分为{XL,L,M,S,XS}5类。需要大家具体情况具体分析了~

练习:

技术分享

==============================================
小结
 
本章讲述了Machine learning中的又一大分支——无监督学习,其实大家对无监督学习中的clustering问题应该很熟悉了,本章中讲到了几个significant points就是elbow 方法应对聚类个数的选择和聚类中心初始化方法,值得大家投入以后的应用。

Stanford机器学习---第九讲. 聚类


推荐阅读
  • 在项目部署后,Node.js 进程可能会遇到不可预见的错误并崩溃。为了及时通知开发人员进行问题排查,我们可以利用 nodemailer 插件来发送邮件提醒。本文将详细介绍如何配置和使用 nodemailer 实现这一功能。 ... [详细]
  • 反向投影技术主要用于在大型输入图像中定位特定的小型模板图像。通过直方图对比,它能够识别出最匹配的区域或点,从而确定模板图像在输入图像中的位置。 ... [详细]
  • 本文详细探讨了JavaScript中的作用域链和闭包机制,解释了它们的工作原理及其在实际编程中的应用。通过具体的代码示例,帮助读者更好地理解和掌握这些概念。 ... [详细]
  • 算法题解析:最短无序连续子数组
    本题探讨如何通过单调栈的方法,找到一个数组中最短的需要排序的连续子数组。通过正向和反向遍历,分别使用单调递增栈和单调递减栈来确定边界索引,从而定位出最小的无序子数组。 ... [详细]
  • 本文探讨了使用C#在SQL Server和Access数据库中批量插入多条数据的性能差异。通过具体代码示例,详细分析了两种数据库的执行效率,并提供了优化建议。 ... [详细]
  • 本问题探讨了在特定条件下排列儿童队伍的方法数量。题目要求计算满足条件的队伍排列总数,并使用递推算法和大数处理技术来解决这一问题。 ... [详细]
  • 在使用STM32Cube进行定时器配置时,有时会遇到延时不准的问题。本文探讨了可能导致延时不准确的原因,并提供了解决方法和预防措施。 ... [详细]
  • 深入理解Lucene搜索机制
    本文旨在帮助读者全面掌握Lucene搜索的编写步骤、核心API及其应用。通过详细解析Lucene的基本查询和查询解析器的使用方法,结合架构图和代码示例,带领读者深入了解Lucene搜索的工作流程。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • Appium + Java 自动化测试中处理页面空白区域点击问题
    在进行移动应用自动化测试时,有时会遇到某些页面没有返回按钮,只能通过点击空白区域返回的情况。本文将探讨如何在Appium + Java环境中有效解决此类问题,并提供详细的解决方案。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 本文探讨了在使用Selenium进行自动化测试时,由于webdriver对象实例化位置不同而导致浏览器闪退的问题,并提供了详细的代码示例和解决方案。 ... [详细]
  • 探索新一代API文档工具,告别Swagger的繁琐
    对于后端开发者而言,编写和维护API文档既繁琐又不可或缺。本文将介绍一款全新的API文档工具,帮助团队更高效地协作,简化API文档生成流程。 ... [详细]
  • 本文探讨了在构建应用程序时,如何对不同类型的数据进行结构化设计。主要分为三类:全局配置、用户个人设置和用户关系链。每种类型的数据都有其独特的用途和应用场景,合理规划这些数据结构有助于提升用户体验和系统的可维护性。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
author-avatar
爱着你心却痛_534
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有