热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Spark学习之路(一)Spark概述

一,什么是spark定义:Spark一种基于内存的快速,通用,可扩展的大数据分析引擎.官网地址:http:spark.apache.org历史:2009年诞生于加州伯

 

一,什么是spark

  定义:Spark一种基于内存的快速,通用,可扩展的大数据分析引擎.

  官网地址:http://spark.apache.org/

  

  历史:2009年诞生于加州伯克利分校AMPLab,项目采用scala编写

    2010年开源

    2013年6月成为Apache孵化项目

    2014年2月成为Apache顶级项目

 

  注:离线计算:会反复的读写磁盘,效率低,很难实现迭代计算,很难做到交互式的数据挖掘.(MapReduce)

   实时流式计算:不反复读写磁盘,效率高,实现迭代计算,做到交互式的数据挖掘.(Spark,当内存不足时,也会有写磁盘操作)

二,Spark的组成

  Spark Core:实现了Spark的基本功能,包含任务调度,内存管理,错误恢复,与存储系统交互等模块.还包含了对弹性分布式数据集(RDD)的API定义.

  Spark SQL:是Spark用来操作结构化数据的程序包.通过Spark SQL,我们可以使用SQL或者Apache Hive版本的SQL方言(HQL)来查询数据.

  Spark Streaming:是Spark提供的对实时数据进行流式计算的组件.提供了用来操作数据的API,并且与Spark Core种的RDD API高度对应.

  Spark MLlib:提供常见的机器学习(ML)功能的程序库.包括分类,回归,聚类,协同,过滤等,还提供了模型评估,数据导入等额外的支持功能.

  

  集群管理器:Spark 设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计 算。为了实现这样的要求,同时获得最大灵活性,Spark支持在各种集群管理器(Cluster Manager)上运行,包括Hadoop YARN、Apache Mesos,以及Spark自带的一个简易调度 器,叫作独立调度器

三,Spark的应用

  Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群。

四,spark特点

  1.Speed:Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能

    

   2,易用性:Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法

  

  3,通用性

  

4,兼容性

   

   

  Mesos:Spark可以运行在Mesos里面(Mesos 类似于yarn的一个资源调度框架)

  standalone:Spark自己可以给自己分配资源(master,worker)

  YARN:Spark可以运行在yarn上面

    Kubernetes:Spark接收 Kubernetes的资源调度

  

    

 

 

 

 

  

转:https://www.cnblogs.com/denghao0921/p/10287707.html



推荐阅读
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 本文详细介绍了如何配置Apache Flume与Spark Streaming,实现高效的数据传输。文中提供了两种集成方案,旨在帮助用户根据具体需求选择最合适的配置方法。 ... [详细]
  • 本文详细介绍如何使用 Apache Spark 执行基本任务,包括启动 Spark Shell、运行示例程序以及编写简单的 WordCount 程序。同时提供了参数配置的注意事项和优化建议。 ... [详细]
  • 近期我们开发了一款包含天气预报功能的万年历应用,为了满足这一需求,团队花费数日时间精心打造并测试了一个稳定可靠的天气API接口,现正式对外开放。 ... [详细]
  • Google排名优化-面向Google(Search Engine Friendly)的URL设计 ... [详细]
  • 尾花|花萼_相关性Correlations 皮尔逊相关系数(pearson)和斯皮尔曼等级相关系数(spearman)
    尾花|花萼_相关性Correlations 皮尔逊相关系数(pearson)和斯皮尔曼等级相关系数(spearman) ... [详细]
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • EasyMock实战指南
    本文介绍了如何使用EasyMock进行单元测试,特别是当测试对象的合作者依赖于外部资源或尚未实现时。通过具体的示例,展示了EasyMock在模拟对象行为方面的强大功能。 ... [详细]
  • 本文探讨了Java中char数据类型的特点,包括其表示范围以及如何处理超出16位字符限制的情况。通过引入代码点和代码单元的概念,详细解释了Java处理增补字符的方法。 ... [详细]
  • ServletContext接口在Java Web开发中扮演着重要角色,它提供了一种方式来获取关于整个Web应用程序的信息。通过ServletContext,开发者可以访问初始化参数、共享数据以及应用资源。 ... [详细]
  • 本文详细探讨了如何在 SparkSQL 中创建 DataFrame,涵盖了从基本概念到具体实践的各种方法。作为持续学习的一部分,本文将持续更新以提供最新信息。 ... [详细]
  • 本文介绍了Elasticsearch (ES),这是一个基于Java开发的开源全文搜索引擎。ES通过JSON接口提供服务,支持分布式集群管理和索引功能,特别适合大规模数据的快速搜索与分析。 ... [详细]
  • 时序数据是指按时间顺序排列的数据集。通过时间轴上的数据点连接,可以构建多维度报表,揭示数据的趋势、规律及异常情况。 ... [详细]
author-avatar
不要破网名_329
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有