import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.linalg.{SparseVector => SV}
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.feature.IDF
/**
* Created by common on 17-5-6.
*/
object TFIDF {
def main(args: Array[String]): Unit = {
val cOnf= new SparkConf().setAppName("WordCount").setMaster("local")
val sc = new SparkContext(conf)
// val path = "hdfs://master:9000/user/common/20Newsgroups/20news-bydate-train/*"
val path = "file:///media/common/工作/kaggle/test/*"
val rdd = sc.wholeTextFiles(path)
// 提取文本信息
val text = rdd.map { case (file, text) => text }
// print(text.count())
val regex = """[^0-9]*""".r
// 排除停用词
val stopwords = Set(
"the", "a", "an", "of", "or", "in", "for", "by", "on", "but", "is", "not",
"with", "as", "was", "if",
"they", "are", "this", "and", "it", "have", "from", "at", "my",
"be", "that", "to"
)
// 以使用正则表达切分原始文档来移除这些非单词字符
val nOnWordSplit= text.flatMap(t =>
t.split("""\W+""").map(_.toLowerCase))
// 过滤掉数字和包含数字的单词
val filterNumbers = nonWordSplit.filter(token =>
regex.pattern.matcher(token).matches)
// 基于出现的频率,排除很少出现的单词,需要先计算一遍整个测试集
val tokenCounts = filterNumbers.map(t => (t, 1)).reduceByKey(_ + _)
val rareTokens = tokenCounts.filter { case (k, v) => v <2 }.map {
case (k, v) => k
}.collect.toSet
// 每一个文档的预处理函数
def tokenize(line: String): Seq[String] = {
line.split("""\W+""")
.map(_.toLowerCase)
.filter(token => regex.pattern.matcher(token).matches)
.filterNot(token => stopwords.contains(token))
.filterNot(token => rareTokens.contains(token))
.filter(token => token.size >= 2) //删除只有一个字母的单词
.toSeq
}
// 每一篇文档经过预处理之后,每一个文档成为一个Seq[String]
val tokens = text.map(doc => tokenize(doc)).cache()
println(tokens.distinct.count)
// 第一篇文档第一部分分词之后的结果
println(tokens.first())
println(tokens.first().length)
// 生成2^18维的特征
val dim = math.pow(2, 18).toInt
val hashingTF = new HashingTF(dim)
// HashingTF 的 transform 函数把每个输入文档(即词项的序列)映射到一个MLlib的Vector对象
val tf = hashingTF.transform(tokens)
// tf的长度是文档的个数,对应的是文档和维度的矩阵
tf.cache
// 取得第一个文档的向量
val v = tf.first.asInstanceOf[SV]
println(v.size)
// v.value和v.indices的长度相等,value是词频,indices是词频非零的下标
println(v.values.size)
println(v.indices.size)
println(v.values.toSeq)
println(v.indices.take(10).toSeq)
// 对每个单词计算逆向文本频率
val idf = new IDF().fit(tf)
// 转换词频向量为TF-IDF向量
val tfidf = idf.transform(tf)
val v2 = tfidf.first.asInstanceOf[SV]
println(v2.values.size)
println(v2.values.take(10).toSeq)
println(v2.indices.take(10).toSeq)
// 计算整个文档的TF-IDF最小和最大权值
val minMaxVals = tfidf.map { v =>
val sv = v.asInstanceOf[SV]
(sv.values.min, sv.values.max)
}
val globalMinMax = minMaxVals.reduce { case ((min1, max1),
(min2, max2)) =>
(math.min(min1, min2), math.max(max1, max2))
}
println(globalMinMax)
// 比较几个单词的TF-IDF权值
val common = sc.parallelize(Seq(Seq("you", "do", "we")))
val tfCommon = hashingTF.transform(common)
val tfidfCommon = idf.transform(tfCommon)
val commOnVector= tfidfCommon.first.asInstanceOf[SV]
println(commonVector.values.toSeq)
val uncommon = sc.parallelize(Seq(Seq("telescope", "legislation","investment")))
val tfUncommon = hashingTF.transform(uncommon)
val tfidfUncommon = idf.transform(tfUncommon)
val uncommOnVector= tfidfUncommon.first.asInstanceOf[SV]
println(uncommonVector.values.toSeq)
}
}