热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Spark内核分析之Shuffle操作流程(非常重要)

        如题,我们来分析一下spark的shuffle操作原理;为什么说其非常重要,是因为shuffle操作是我们在Spark调优中非常重要的一环,对shuffle进行了优

        如题,我们来分析一下spark的shuffle操作原理;为什么说其非常重要,是因为shuffle操作是我们在Spark调优中非常重要的一环,对shuffle进行了优化,往往可以使得我们的spark程序运行效率有极大的提升。依照惯例,我们先来看一张图;

《Spark内核分析之Shuffle操作流程(非常重要)》 普通shuffle流程图

上图是一个普通的Shuffle操作流程原理图,一个shuffle操作由三个RDD算子构成,分别是mapPartitionsRDD,ShuffleRDD,mapPartitionsRDD;如上图所示,

1.每个ShuffleMapTask都会为每个ResultTask创建一个Bucket缓存和一个对应的ShuffleBlockFile磁盘文件;2.每个ShuffleMapTask的输出相关信息封装成一个MapStatus发送到DAGScheduler的MapOutputTracker中去;

3.ResultTask开始拉取该任务所需要的数据,ResultTask通过向DAGScheduler的MapOutputTracker获取MapStatus的信息,从而知道自己需要的数据所在的位置,然后去相应的位置拉去数据到该任务所在节点的内存中,如果内存不够,会将部分数据写入磁盘,完成这系列的操作是由ShufflerRDD算子完成的;

4.然后ResultTask对拉取到的数据进行聚合操作,最后生成mapPartitionsRDD算子;

想想上面的这个Shuffler流程会有什么问题?

我们来做一个假设,如果有100个ShuffleMapTask,2个CPU Core,100个ResultTask,那么这个shuffler操作将产生10000个文件,如此多的文件对于Spark作业的性能就是一个灾难;针对这个问题当然有对应的优化策略,接着我们来看另外一张图;

《Spark内核分析之Shuffle操作流程(非常重要)》 优化的Shuffler流程图

        通过优化的Shuffler操作如上图所示,假设有100个ShufflerMapTask,2CPU core,100个Resulttask,优化后产生的中间文件是200个,是优化之前的1/50;那么这是如何做到的,通过阅读源码可以知道,只要引入consolidation机制就可以实现了,其配置是通过在SparkConf中配置对应的参数即可实现;

        来简单分析一下:一个ShuffleMapTask将数据写入本地不变,但是当这一批ShuffleMapTask运行完成以后,下一批ShuffleMapTask开始运行(一批ShuffleMapTask是指,同一时间有两个Task并行执行,因为有两个CPU Core),它们产生的数据会直接写入上一批ShuffleMapTask产生的本地文件中;上图中左边的一组可以称为一组ShuffleGroup,每个文件中都存储了多个ShuffleMapTask的数据,每个ShuffleMapTask所产生的数据是一个segment,每个File中通过索引,偏移量来标记每部分数据来自不同的ShuffleMapTask。

下面我们来看看源码是如何实现的;

《Spark内核分析之Shuffle操作流程(非常重要)》 ShuffleMapTask的runTask

1.首先通过Spark全局变量得到shuffleManager对象,并通过shuffleManager对象获得Write对象;

2.接着,通过rdd.iterator方法对属于自己的partition进行计算,最后会调用我们自己编写的RDD算子来计算partition;

3.接着Writer调用自己的write方法将RDD算子计算的结果写入缓存;

《Spark内核分析之Shuffle操作流程(非常重要)》 HashShuffleWriter的write

1.判断aggregator为true,并且是否设置了map端的combine操作;若成立,则进行map端的数据合并(这里是一个spark优化点,在我之前关于spark优化系列文章中有写过);

2.对所有经过合并操作之后的数据遍历,根据每个元素获得对应的bucketId,然后将改元素写入对应的bucket缓存中;

这里我们来看看这个shuffle对象做了什么?

《Spark内核分析之Shuffle操作流程(非常重要)》 FileShuffleBlockManager的forMapTask

1.首先创建出一个ShuffleWriterGroup对象;

2.接着判断Spark作业是否设置了consolidateShuffleFiles;如果设置其为true,首先得到一个fileGroup对象,然后使用shuffleId,mapId,BucketId来得到一个blockId,接着根据这个blockId写数据到磁盘的对象;相反,如果没有设置consolidateShuffleFiles为true,则直接为每个shuffleMapTask创建一个blockFile,然后得到一个写数据到磁盘的对象;

3.执行完这里后,接着调用write方法将数据写入内存缓冲bucket,然后再将数据写入磁盘;

写数据到这里就完成了,然后会将产生的数据位置等信息封装成一个MapStatus对象发送给DAGSchedule的MapOutputTracker中;接下来ResultTask开始读取数据;

《Spark内核分析之Shuffle操作流程(非常重要)》 ShuffleRDD的compute
《Spark内核分析之Shuffle操作流程(非常重要)》 HashShuffleReader的read

《Spark内核分析之Shuffle操作流程(非常重要)》 BlockStoreShuffleFetcher的fetch
《Spark内核分析之Shuffle操作流程(非常重要)》 BlockStoreShuffleFetcher的fetch

总结:到此shuffle的整个操作流程就分析完了,接下来会分析底层数据存储的核心组件BlockManager的工作原理,,欢迎关注。

如需转载,请注明:

本篇:Spark内核分析之Shuffle操作流程(非常重要)


推荐阅读
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 初探性能优化:入门指南与实践技巧
    在编程领域,常有“尚未精通编码便急于优化”的声音。为了从性能优化的角度提升代码质量,本文将带领读者初步探索性能优化的基本概念与实践技巧。即使程序看似运行良好,数据处理效率仍有待提高,通过系统学习性能优化,能够帮助开发者编写更加高效、稳定的代码。文章不仅介绍了性能优化的基础知识,还提供了实用的调优方法和工具,帮助读者在实际项目中应用这些技术。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 在深入研究 React 项目的过程中,特别是在探索 react-router 源码时,我发现了其中蕴含的中间件概念。这激发了我对中间件的进一步思考与整理。本文将详细探讨 Redux 中间件的原理及其在实际项目中的应用,帮助读者更好地理解和使用这一强大工具。通过具体示例和代码解析,我们将揭示中间件如何提升应用的状态管理和异步操作处理能力。 ... [详细]
  • 投融资周报 | Circle 达成 4 亿美元融资协议,唯一艺术平台 A 轮融资超千万美元 ... [详细]
  • 本文详细介绍了如何使用OpenSSL自建CA证书的步骤,包括准备工作、生成CA证书、生成服务器待签证书以及证书签名等过程。 ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 基于Linux开源VOIP系统LinPhone[四]
    ****************************************************************************************** ... [详细]
  • 在《Linux高性能服务器编程》一书中,第3.2节深入探讨了TCP报头的结构与功能。TCP报头是每个TCP数据段中不可或缺的部分,它不仅包含了源端口和目的端口的信息,还负责管理TCP连接的状态和控制。本节内容详尽地解析了TCP报头的各项字段及其作用,为读者提供了深入理解TCP协议的基础。 ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • ### 优化后的摘要本学习指南旨在帮助读者全面掌握 Bootstrap 前端框架的核心知识点与实战技巧。内容涵盖基础入门、核心功能和高级应用。第一章通过一个简单的“Hello World”示例,介绍 Bootstrap 的基本用法和快速上手方法。第二章深入探讨 Bootstrap 与 JSP 集成的细节,揭示两者结合的优势和应用场景。第三章则进一步讲解 Bootstrap 的高级特性,如响应式设计和组件定制,为开发者提供全方位的技术支持。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
author-avatar
超级-郁闷中
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有