作者:王功争_781 | 来源:互联网 | 2023-08-11 17:23
本文由编程笔记#小编为大家整理,主要介绍了SparkStreamingHA高可用性相关的知识,希望对你有一定的参考价值。1、UpdateStateByKey、windows等
本文由编程笔记#小编为大家整理,主要介绍了SparkStreaming HA高可用性相关的知识,希望对你有一定的参考价值。
1、UpdateStateByKey、windows等有状态的操作时,自动进行checkpoint,必须设置checkpoint目录,数据保留一份在容错的文件系统中,一旦内存中的数据丢失,可以从文件系统中读取数据,不需要重新计算。
SparkStreaming.checkpoint("hdfs://ip:port/checkpoint")
2、Driver高可用性(Java版)
第一次在创建和启动StreamingContext的时候,那么将持续不断的产生实时计算的元数据并写入检查点,如果driver节点挂掉,那么可以让Spark集群自动重启集群(必须使用yarn cluster模式,spark-submit --deploy-mode cluster --supervise ....),然后继续运行计算程序,没有数据丢失。
private static void testDriverHA() {
final Streaming checkpointDir="hdfs://ip:port/checkpoint";
JavaStreamingContextFactory cOntextFactory= new JavaStreamingContextFactory() {
@Override
public JavaStreamingContext create() {
SparkConf cOnf= new SparkConf()
.setMaster("local[2]")
.setAppName("AdClickRealTimeStatSpark");
JavaStreamingContext jssc = new JavaStreamingContext(
conf, Durations.seconds(5));
jssc.checkpoint(checkpointDir);
Map kafkaParams = new HashMap();
kafkaParams.put(Constants.KAFKA_METADATA_BROKER_LIST,
ConfigurationManager.getProperty(Constants.KAFKA_METADATA_BROKER_LIST));
String kafkaTopics = ConfigurationManager.getProperty(Constants.KAFKA_TOPICS);
String[] kafkaTopicsSplited = kafkaTopics.split(",");
Set topics = new HashSet();
for(String kafkaTopic : kafkaTopicsSplited) {
topics.add(kafkaTopic);
}
JavaPairInputDStream adRealTimeLogDStream = KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topics);
JavaPairDStream filteredAdRealTimeLogDStream =
filterByBlacklist(adRealTimeLogDStream);
generateDynamicBlacklist(filteredAdRealTimeLogDStream);
JavaPairDStream adRealTimeStatDStream = calculateRealTimeStat(
filteredAdRealTimeLogDStream);
calculateProvinceTop3Ad(adRealTimeStatDStream);
calculateAdClickCountByWindow(adRealTimeLogDStream);
return jssc;
}
};
JavaStreamingContext cOntext= JavaStreamingContext.getOrCreate(
checkpointDir, contextFactory);
context.start();
context.awaitTermination();
}
3、实现RDD高可用性,启动WAL预写日志机制
sparkStreaming从原理上说,是通过receiver来进行数据接收的,接收到时的数据,会被划分成一个个的block,block会被组合成batch,针对一个batch,会创建一个Rdd,启动一个job来执行定义的算子操作。receiver主要接收到数据,那么就会立即将数据写入一份到时容错文件系统(比如hdfs)上的checkpoint目录中的,一份磁盘文件中去,作为数据的冗余副本。
SparkConf cOnf= new SparkConf()
.setMaster("local[2]")
.setAppName("AdClickRealTimeStatSpark")
.set("spark.streaming.receiver.writeAheadLog.enable","true");