热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

SparkRDD在s3文件上创建-SparkRDDcreateons3file

ImtryingtocreateJAVARDDons3filebutnotabletocreaterdd.Cansomeonehelpmetosolvethis

I'm trying to create JAVARDD on s3 file but not able to create rdd.Can someone help me to solve this problem.

我正在尝试在s3文件上创建JAVARDD但无法创建rdd.Can有人帮我解决了这个问题。

Code :

        SparkConf cOnf= new SparkConf().setAppName(appName).setMaster("local");
            JavaSparkContext javaSparkCOntext= new JavaSparkContext(conf);

    javaSparkContext.hadoopConfiguration().set("fs.s3.awsAccessKeyId",
                    accessKey);
            javaSparkContext.hadoopConfiguration().set("fs.s3.awsSecretAccessKey",
                    secretKey);
            javaSparkContext.hadoopConfiguration().set("fs.s3.impl",
                    "org.apache.hadoop.fs.s3native.NativeS3FileSystem");

JavaRDD rawData = sparkContext
                    .textFile("s3://mybucket/sample.txt");

This code throwing exception

此代码抛出异常

2015-05-06 18:58:57 WARN  LoadSnappy:46 - Snappy native library not loaded
java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 3: s3:
    at org.apache.hadoop.fs.Path.initialize(Path.java:148)
    at org.apache.hadoop.fs.Path.(Path.java:126)
    at org.apache.hadoop.fs.Path.(Path.java:50)
    at org.apache.hadoop.fs.FileSystem.globPathsLevel(FileSystem.java:1084)
    at org.apache.hadoop.fs.FileSystem.globPathsLevel(FileSystem.java:1087)
    at org.apache.hadoop.fs.FileSystem.globPathsLevel(FileSystem.java:1087)
    at org.apache.hadoop.fs.FileSystem.globPathsLevel(FileSystem.java:1087)
    at org.apache.hadoop.fs.FileSystem.globPathsLevel(FileSystem.java:1087)
    at org.apache.hadoop.fs.FileSystem.globStatusInternal(FileSystem.java:1023)
    at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:987)
    at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:177)
    at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:208)
    at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:203)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
    at org.apache.spark.rdd.RDD.take(RDD.scala:1156)
    at org.apache.spark.rdd.RDD.first(RDD.scala:1189)
    at org.apache.spark.api.java.JavaRDDLike$class.first(JavaRDDLike.scala:477)
    at org.apache.spark.api.java.JavaRDD.first(JavaRDD.scala:32)
    at com.cignifi.DataExplorationValidation.processFile(DataExplorationValidation.java:148)
    at com.cignifi.DataExplorationValidation.main(DataExplorationValidation.java:104)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.net.URISyntaxException: Expected scheme-specific part at index 3: s3:
    at java.net.URI$Parser.fail(URI.java:2829)
    at java.net.URI$Parser.failExpecting(URI.java:2835)
    at java.net.URI$Parser.parse(URI.java:3038)
    at java.net.URI.(URI.java:753)
    at org.apache.hadoop.fs.Path.initialize(Path.java:145)
    ... 36 more

Some more details

更多细节

Spark version 1.3.0.

Spark版本1.3.0。

Running in local mode using spark-submit.

使用spark-submit在本地模式下运行。

I tried this thing on local and EC2 instance ,In both case I'm getting same error.

我在本地和EC2实例上试过这个东西,在这两种情况下我都得到同样的错误。

1 个解决方案

#1


It should be s3n:// instead of s3://

它应该是s3n://而不是s3://

See External Datasets in Spark Programming Guide

请参阅“Spark编程指南”中的“外部数据集”


推荐阅读
  • 从理想主义者的内心深处萌发的技术信仰,推动了云原生技术在全球范围内的快速发展。本文将带你深入了解阿里巴巴在开源领域的贡献与成就。 ... [详细]
  • 本文详细介绍了如何搭建一个高可用的MongoDB集群,包括环境准备、用户配置、目录创建、MongoDB安装、配置文件设置、集群组件部署等步骤。特别关注分片、读写分离及负载均衡的实现。 ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • 本文介绍了如何在 MapReduce 作业中使用 SequenceFileOutputFormat 生成 SequenceFile 文件,并详细解释了 SequenceFile 的结构和用途。 ... [详细]
  • com.sun.javadoc.PackageDoc.exceptions()方法的使用及代码示例 ... [详细]
  • 本文详细介绍了在 Ubuntu 系统上搭建 Hadoop 集群时遇到的 SSH 密钥认证问题及其解决方案。通过本文,读者可以了解如何在多台虚拟机之间实现无密码 SSH 登录,从而顺利启动 Hadoop 集群。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • HBase Java API 进阶:过滤器详解与应用实例
    本文详细探讨了HBase 1.2.6版本中Java API的高级应用,重点介绍了过滤器的使用方法和实际案例。首先,文章对几种常见的HBase过滤器进行了概述,包括列前缀过滤器(ColumnPrefixFilter)和时间戳过滤器(TimestampsFilter)。此外,还详细讲解了分页过滤器(PageFilter)的实现原理及其在大数据查询中的应用场景。通过具体的代码示例,读者可以更好地理解和掌握这些过滤器的使用技巧,从而提高数据处理的效率和灵活性。 ... [详细]
  • 投融资周报 | Circle 达成 4 亿美元融资协议,唯一艺术平台 A 轮融资超千万美元 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
author-avatar
mobiledu2502925687
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有