热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Spark:repartition和repartitionByRange有什么区别?

我在这里浏览了文档:https://spark.apache.org/docs/latest/api/python/pyspark.sql.html它说:

我在这里浏览了文档:https : //spark.apache.org/docs/latest/api/python/pyspark.sql.html

它说:


  • 用于重新分区:生成的 DataFrame 是散列分区的。

  • 对于 repartitionByRange:生成的 DataFrame 是范围分区的。

和前面的问题也提到了它。但是,我仍然不明白它们究竟有何不同,以及在选择其中一个时会产生什么影响?

更重要的是,如果 repartition 进行哈希分区,提供列作为其参数有什么影响?

回答


我认为最好通过一些实验来研究差异。

测试数据帧

对于这个实验,我使用了以下两个数据帧(我在 Scala 中展示了代码,但概念与 Python API 相同):

// Dataframe with one column "value" containing the values ranging from 0 to 1000000
val df = Seq(0 to 1000000: _*).toDF("value")
// Dataframe with one column "value" containing 1000000 the number 0 in addition to the numbers 5000, 10000 and 100000
val df2 = Seq((0 to 1000000).map(_ => 0) :+ 5000 :+ 10000 :+ 100000: _*).toDF("value")

理论



  • repartition应用HashPartitioner何时提供一列或多列,以及RoundRobinPartitioner在提供的分区数量上均匀分布数据。如果提供了一列(或更多),这些值将被散列并用于通过计算类似的东西来确定分区号partition = hash(columns) % numberOfPartitions


  • repartitionByRange将根据列值的范围对数据进行分区。这通常用于连续(非离散)值,例如任何类型的数字。请注意,由于性能原因,此方法使用采样来估计范围。因此,输出可能不一致,因为采样可能返回不同的值。样本大小可以由 config 控制spark.sql.execution.rangeExchange.sampleSizePerPartition


还值得一提的是,对于这两种方法,如果没有numPartitions给出,默认情况下它会将 Dataframe 数据分区到spark.sql.shuffle.partitions您的 Spark 会话中配置,并且可以通过自适应查询执行(自 Spark 3.x 起可用)合并。

测试设置

基于给定的 Testdata 我总是应用相同的代码:

val testDf = df
// here I will insert the partition logic
.withColumn("partition", spark_partition_id()) // applying SQL built-in function to determin actual partition
.groupBy(col("partition"))
.agg(
count(col("value")).as("count"),
min(col("value")).as("min_value"),
max(col("value")).as("max_value"))
.orderBy(col("partition"))
testDf.show(false)

检测结果


df.repartition(4, col("value"))

正如预期的那样,我们得到了 4 个分区,因为 的值df范围从 0 到 1000000,我们看到它们的散列值将产生一个分布良好的 Dataframe。

+---------+------+---------+---------+
|partition|count |min_value|max_value|
+---------+------+---------+---------+
|0 |249911|12 |1000000 |
|1 |250076|6 |999994 |
|2 |250334|2 |999999 |
|3 |249680|0 |999998 |
+---------+------+---------+---------+

df.repartitionByRange(4, col("value"))

同样在这种情况下,我们得到 4 个分区,但这次最小值和最大值清楚地显示了分区内的值范围。它几乎均匀分布,每个分区有 250000 个值。

+---------+------+---------+---------+
|partition|count |min_value|max_value|
+---------+------+---------+---------+
|0 |244803|0 |244802 |
|1 |255376|244803 |500178 |
|2 |249777|500179 |749955 |
|3 |250045|749956 |1000000 |
+---------+------+---------+---------+

df2.repartition(4, col("value"))

现在,我们正在使用另一个 Dataframe df2。这里,散列算法对只有 0、5000、10000 或 100000 的值进行散列。当然,值 0 的散列将始终相同,因此所有零最终都在同一个分区中(在这种情况下,分区 3 )。其他两个分区只包含一个值。

+---------+-------+---------+---------+
|partition|count |min_value|max_value|
+---------+-------+---------+---------+
|0 |1 |100000 |100000 |
|1 |1 |10000 |10000 |
|2 |1 |5000 |5000 |
|3 |1000001|0 |0 |
+---------+-------+---------+---------+

df2.repartition(4)

如果不使用“value”列的内容,该repartition方法将在 RoundRobin 的基础上分发消息。所有分区的数据量几乎相同。

+---------+------+---------+---------+
|partition|count |min_value|max_value|
+---------+------+---------+---------+
|0 |250002|0 |5000 |
|1 |250002|0 |10000 |
|2 |249998|0 |100000 |
|3 |250002|0 |0 |
+---------+------+---------+---------+

df2.repartitionByRange(4, col("value"))

这种情况表明数据帧df2没有很好地定义用于按范围重新分区,因为几乎所有值都是 0。因此,我们甚至最终只有两个分区,而分区 0 包含所有零。

+---------+-------+---------+---------+
|partition|count |min_value|max_value|
+---------+-------+---------+---------+
|0 |1000001|0 |0 |
|1 |3 |5000 |100000 |
+---------+-------+---------+---------+






推荐阅读
  • ThinkPHP模板中函数调用的开发技巧与实践 ... [详细]
  • 【实例简介】本文详细介绍了如何在PHP中实现微信支付的退款功能,并提供了订单创建类的完整代码及调用示例。在配置过程中,需确保正确设置相关参数,特别是证书路径应根据项目实际情况进行调整。为了保证系统的安全性,存放证书的目录需要设置为可读权限。值得注意的是,普通支付操作无需证书,但在执行退款操作时必须提供证书。此外,本文还对常见的错误处理和调试技巧进行了说明,帮助开发者快速定位和解决问题。 ... [详细]
  • 深入理解排序算法:集合 1(编程语言中的高效排序工具) ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • 技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统
    技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • 非线性门控感知器算法的实现与应用分析 ... [详细]
  • 基于Net Core 3.0与Web API的前后端分离开发:Vue.js在前端的应用
    本文介绍了如何使用Net Core 3.0和Web API进行前后端分离开发,并重点探讨了Vue.js在前端的应用。后端采用MySQL数据库和EF Core框架进行数据操作,开发环境为Windows 10和Visual Studio 2019,MySQL服务器版本为8.0.16。文章详细描述了API项目的创建过程、启动步骤以及必要的插件安装,为开发者提供了一套完整的开发指南。 ... [详细]
  • Git命令基础应用指南
    本指南详细介绍了Git命令的基础应用,包括如何使用`git clone`从远程服务器克隆仓库(例如:`git clone [url/path/repository]`)以及如何克隆本地仓库(例如:`git clone [local/path/repository]`)。此外,还提供了常见的Git操作技巧,帮助开发者高效管理代码版本。 ... [详细]
  • 在对WordPress Duplicator插件0.4.4版本的安全评估中,发现其存在跨站脚本(XSS)攻击漏洞。此漏洞可能被利用进行恶意操作,建议用户及时更新至最新版本以确保系统安全。测试方法仅限于安全研究和教学目的,使用时需自行承担风险。漏洞编号:HTB23162。 ... [详细]
  • 本文介绍了如何利用Shell脚本高效地部署MHA(MySQL High Availability)高可用集群。通过详细的脚本编写和配置示例,展示了自动化部署过程中的关键步骤和注意事项。该方法不仅简化了集群的部署流程,还提高了系统的稳定性和可用性。 ... [详细]
  • 本文介绍了如何利用Struts1框架构建一个简易的四则运算计算器。通过采用DispatchAction来处理不同类型的计算请求,并使用动态Form来优化开发流程,确保代码的简洁性和可维护性。同时,系统提供了用户友好的错误提示,以增强用户体验。 ... [详细]
  • 本指南介绍了如何在ASP.NET Web应用程序中利用C#和JavaScript实现基于指纹识别的登录系统。通过集成指纹识别技术,用户无需输入传统的登录ID即可完成身份验证,从而提升用户体验和安全性。我们将详细探讨如何配置和部署这一功能,确保系统的稳定性和可靠性。 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
author-avatar
女孩明天_会更好
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有