热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

似然与概率的区别、联系

之前看书上的一直不理解到底什么是似然,最后还是查了好几篇文章后才明白,现在我来总结一下吧,要想看懂最大似然估计,首先我们要理解什么是似然,不然对我来说不理解似然,我就一直在困惑最大

之前看书上的一直不理解到底什么是似然,最后还是查了好几篇文章后才明白,现在我来总结一下吧,要想看懂最大似然估计,首先我们要理解什么是似然,不然对我来说不理解似然,我就一直在困惑最大似然估计到底要求的是个什么东西,而那个未知数θ到底是个什么东西TT

原博主写的太好了,这里 我就全盘奉上~

似然与概率

在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率(Probability)几乎是一对同义词,但是在统计学中似然和概率却是两个不同的概念。概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最后是哪一面朝上,但是根据硬币的性质我们可以推测任何一面朝上的可能性均为50%,这个概率只有在抛硬币之前才是有意义的,抛完硬币后的结果便是确定的;而似然刚好相反,是在确定的结果下去推测产生这个结果的可能环境(参数),还是抛硬币的例子,假设我们随机抛掷一枚硬币1,000次,结果500次人头朝上,500次数字朝上(实际情况一般不会这么理想,这里只是举个例子),我们很容易判断这是一枚标准的硬币,两面朝上的概率均为50%,这个过程就是我们根据结果来判断这个事情本身的性质(参数),也就是似然。

结果和参数相互对应的时候,似然和概率在数值上是相等的,如果用 θ 表示环境对应的参数,x 表示结果,那么概率可以表示为:

P(x|θ) 
P(x|θ) 
是条件概率的表示方法,θ是前置条件,理解为在θ 的前提下,事件 x 发生的概率,相对应的似然可以表示为:

《似然与概率的区别、联系》 
理解为已知结果为 x ,参数为θ (似然函数里θ 是变量,这里## 标题 ##说的参数是相对与概率而言的)对应的概率,即:

《似然与概率的区别、联系》 
需要说明的是两者在数值上相等,但是意义并不相同,《似然与概率的区别、联系》 是关于 θ 的函数,而 P 则是关于 x 的函数,两者从不同的角度描述一件事情。

举个例子

以伯努利分布(Bernoulli distribution,又叫做两点分布或0-1分布)为例:

《似然与概率的区别、联系》

也可以写成以下形式: 
《似然与概率的区别、联系》

这里注意区分 f(x;p)f(x;p) 与前面的条件概率的区别,引号后的 pp 仅表示 ff 依赖于 pp 的值,pp 并不是 ff 的前置条件,而只是这个概率分布的一个参数而已,也可以省略引号后的内容:

《似然与概率的区别、联系》

对于任意的参数 pp 我们都可以画出伯努利分布的概率图,当 p=0.5p=0.5 时:

f(x)=0.5

  • 1
  • 2

我们可以得到下面的概率密度图: 
《似然与概率的区别、联系》

从似然的角度出发,假设我们观测到的结果是 x=0.5x=0.5(即某一面朝上的概率是50%,这个结果可能是通过几千次几万次的试验得到的,总之我们现在知道这个结论),可以得到以下的似然函数: 
《似然与概率的区别、联系》

对应的图是这样的: 
《似然与概率的区别、联系》

与概率分布图不同的是,似然函数是一个(0, 1)内连续的函数,所以得到的图也是连续的,我们很容易看出似然函数的极值(也是最大值)在 p=0.5p=0.5 处得到,通常不需要做图来观察极值,令似然函数的偏导数为零即可求得极值条件。

ps. 似然函数里的 pp 描述的是硬币的性质而非事件发生的概率(比如 p=0.5p=0.5 描述的是一枚两面均匀的硬币)。为了避免混淆,可以用其他字母来表示这个性质,如果我们用 ππ 来表示,那么似然函数就可以写成: 
《似然与概率的区别、联系》

似然函数的最大值

似然函数的最大值意味着什么?让我们回到概率和似然的定义,概率描述的是在一定条件下某个事件发生的可能性,概率越大说明这件事情越可能会发生;而似然描述的是结果已知的情况下,该事件在不同条件下发生的可能性,似然函数的值越大说明该事件在对应的条件下发生的可能性越大。

现在再来看看之前提到的抛硬币的例子:

《似然与概率的区别、联系》

上面的 pp (硬币的性质)就是我们说的事件发生的条件,LL 描述的是性质不同的硬币,任意一面向上概率为50% 的可能性有多大,是不是有点绕?让我们来定义 A:

A=事件的结果=任意一面向上概率为50%

那么 LL 描述的是性质不同的硬币,A 事件的可能性有多大,这么一说是不是清楚多了?

在很多实际问题中,比如机器学习领域,我们更关注的是似然函数的最大值,我们需要根据已知事件来找出产生这种结果最有可能的条件,目的当然是根据这个最有可能的条件去推测未知事件的概率。在这个抛硬币的事件中,pp 可以取 [0, 1] 内的所有值,这是由硬币的性质所决定的,显而易见的是 p=0.5p=0.5 这种硬币最有可能产生我们观测到的结果。

对数化的似然函数

实际问题往往要比抛一次硬币复杂得多,会涉及到多个独立事件,在似然函数的表达式中通常都会出现连乘: 
《似然与概率的区别、联系》

对多项乘积的求导往往非常复杂,但是对于多项求和的求导却要简单的多,对数函数不改变原函数的单调性和极值位置,而且根据对数函数的性质可以将乘积转换为加减式,这可以大大简化求导的过程: 
《似然与概率的区别、联系》

在机器学习的公式推导中,经常能看到类似的转化。

看到这应该不会再那么迷糊了吧~最后再来个例子:

举个别人博客中的例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,

  • 1
  • 2

    P(Data | M)

     = P(x1,x2,…,x100|M)

     = P(x1|M)P(x2|M)…P(x100|M)

     = p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。

    70p^69(1-p)^30-p^70*30(1-p)^29=0。

    解方程可以得到p=0.7。

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?

    P(Data | M) = ?

根据公式 
《似然与概率的区别、联系》

由上可知最大似然估计的一般求解过程:

  (1) 写出似然函数;

  (2) 对似然函数取对数,并整理;

  (3) 求导数 ;

  (4) 解似然方程

,

之前看书上的一直不理解到底什么是似然,最后还是查了好几篇文章后才明白,现在我来总结一下吧,要想看懂最大似然估计,首先我们要理解什么是似然,不然对我来说不理解似然,我就一直在困惑最大似然估计到底要求的是个什么东西,而那个未知数θ到底是个什么东西TT


推荐阅读
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 本文介绍了闭包的定义和运转机制,重点解释了闭包如何能够接触外部函数的作用域中的变量。通过词法作用域的查找规则,闭包可以访问外部函数的作用域。同时还提到了闭包的作用和影响。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 本文介绍了绕过WAF的XSS检测机制的方法,包括确定payload结构、测试和混淆。同时提出了一种构建XSS payload的方法,该payload与安全机制使用的正则表达式不匹配。通过清理用户输入、转义输出、使用文档对象模型(DOM)接收器和源、实施适当的跨域资源共享(CORS)策略和其他安全策略,可以有效阻止XSS漏洞。但是,WAF或自定义过滤器仍然被广泛使用来增加安全性。本文的方法可以绕过这种安全机制,构建与正则表达式不匹配的XSS payload。 ... [详细]
  • GPT-3发布,动动手指就能自动生成代码的神器来了!
    近日,OpenAI发布了最新的NLP模型GPT-3,该模型在GitHub趋势榜上名列前茅。GPT-3使用的数据集容量达到45TB,参数个数高达1750亿,训练好的模型需要700G的硬盘空间来存储。一位开发者根据GPT-3模型上线了一个名为debuid的网站,用户只需用英语描述需求,前端代码就能自动生成。这个神奇的功能让许多程序员感到惊讶。去年,OpenAI在与世界冠军OG战队的表演赛中展示了他们的强化学习模型,在限定条件下以2:0完胜人类冠军。 ... [详细]
  • 背景应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入、跨站等攻击仍然占据着较前的位置。WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在 ... [详细]
  • 建立分类感知器二元模型对样本数据进行分类
    本文介绍了建立分类感知器二元模型对样本数据进行分类的方法。通过建立线性模型,使用最小二乘、Logistic回归等方法进行建模,考虑到可能性的大小等因素。通过极大似然估计求得分类器的参数,使用牛顿-拉菲森迭代方法求解方程组。同时介绍了梯度上升算法和牛顿迭代的收敛速度比较。最后给出了公式法和logistic regression的实现示例。 ... [详细]
  • 前言:拿到一个案例,去分析:它该是做分类还是做回归,哪部分该做分类,哪部分该做回归,哪部分该做优化,它们的目标值分别是什么。再挑影响因素,哪些和分类有关的影响因素,哪些和回归有关的 ... [详细]
  • Commit1ced2a7433ea8937a1b260ea65d708f32ca7c95eintroduceda+Clonetraitboundtom ... [详细]
  • Java序列化对象传给PHP的方法及原理解析
    本文介绍了Java序列化对象传给PHP的方法及原理,包括Java对象传递的方式、序列化的方式、PHP中的序列化用法介绍、Java是否能反序列化PHP的数据、Java序列化的原理以及解决Java序列化中的问题。同时还解释了序列化的概念和作用,以及代码执行序列化所需要的权限。最后指出,序列化会将对象实例的所有字段都进行序列化,使得数据能够被表示为实例的序列化数据,但只有能够解释该格式的代码才能够确定数据的内容。 ... [详细]
  • 本文介绍了[从头学数学]中第101节关于比例的相关问题的研究和修炼过程。主要内容包括[机器小伟]和[工程师阿伟]一起研究比例的相关问题,并给出了一个求比例的函数scale的实现。 ... [详细]
author-avatar
鲁有军_644
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有