热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

数据科学家无需太多,让大数据好用就够了

编者注:纽约时报曾撰文称大数据时代已经来临,数据科学家曾被冠以最性感职业之称,可是电子商务咨询公司Baynote的创始人兼CTOScottBrave却说我们不需要更多的数据


    编者注:纽约时报曾撰文称大数据时代已经来临,数据科学家曾被冠以最性感职业之称,可是电子商务咨询公司 Baynote 的创始人兼 CTO Scott Brave 却说我们不需要更多的数据科学家,让大数据更方便使用就够了。以下是他的看法:


   大数据是今年的热门,以至于纽约时报等媒体均宣称大数据时代已经来临。挖掘大数据可以产出洞察力以及利用大数据进行知情决策和行动所需的激励和架构。而挖掘这些金矿的矿工,就是数据科学家,所以这种矿工也被冠以未来最性感职业的称号。但是,今天任何一篇有关大数据的文章最后都不可避免地得出这样一个结论,即数据科学家严重短缺。麦肯锡 2011 年被热议的一项调查就指出,许多组织普遍缺乏这类熟练技能的人才。


   但是如何绕开这一瓶颈,让大数据直接为商业领袖所用却很少有人讨论。软件产业此前已经做过这样的事情,现在我们还可以再效仿。



   为了实现这一目标,首先必须理解数据科学家在大数据中的角色。目前,大数据就是类似于类似 Hadoop、NoSQL、Hive 以及 R 那样的分布式数据架构和工具的一个大熔炉。在这种高技术环境下,数据科学家充当了这些系统和业务侧领域专家之间信息传递者与中介。


   总的来说数据科学家有三个主要角色:数据架构、机器学习以及分析。虽然这些角色都很重要,但是并非所有的公司都需要像 Google 和 Facebook 那样拥有一支高度专业的数据团队。只要能开发出与目的相符的产品,并让技术的复杂性尽可能的低,那么大数据的威力就可以直接交到业务用户手上。


   作为例子,我们可以回顾一下世纪之交的 web 内容管理革命。网站曾风靡一时,但领域专家却屡屡碰壁,因为 IT 是瓶颈。每每有新内容添加时都需要进行编排,有时候甚至需要 IT 精英硬编码进去。这个问题后来是如何解决掉的?我们把这些基本需求概括并抽象进内容管理系统之中,然后让它们简单到连不懂技术的人也懂使用。瓶颈于是被打破了。


   接下来,我们以网上贸易为背景分别看看数据科学家的这三种角色。


   数据架构


   降低复杂性的关键是限制范围。几乎所有的电商都关心用户行为的捕捉—活动、购物、离线交易以及社会化数据,几乎每一个电商也都会有产品目录和客户档案。


   只要把范围限制到这一基本功能上,就可以为标准数据输入创建模板,从而大大简化数据捕捉与管道连接。在 2/8 原则下(80% 的大数据用例可利用 20% 的技术实现),我们不需要把所有不同的数据架构和工具(Hadoop、Hbase、 Hive、Pig、Cassandra 以及 Mahout)都打包进来。


   机器学习


   好吧,数据架构似乎可以用系统搞定,机器学习总得要人来调教吧。如果需求是高度定制化的话,也许数据科学家是必要的。这里面的很多事情都可以抽象出来,像推荐引擎和个性化系统等。比方说,数据科学家的很大一部分工作是做出“特征”模式,即把输入数据组合好,让机器有效学习。过程差不多就是数据科学家把数据摆弄好然后塞进机器,再按一下“启动”即可,数据科学家的工作只是需要帮助机器以一种有意义的方式来审视这个世界。


   可是如果按照单个领域来看,特征创建也是可以模板化的。比方说,每个电子商务网站都有购买流和用户细分的概念。如果领域专家可以直接将其思路编码进系统,将领域体现到系统里面去,那么数据科学家这个翻译和中介是不是就可以省掉了?


   分析


   从数据当中自动分析出最有价值的东西从来都不是一件易事。但是提供针对单个领域的透视镜是有可能的—这可以让业务专家做试验,就像数据科学家那样。这似乎是一个最容易解决的问题,因为市场上早已经有了各种特定领域的分析产品。


   但是这些产品对于领域专家来说约束太多,不易接近。界面友好性绝对还有改进的空间。我们还需要考虑机器如何从分析得出的结果中学习。这是关键的反馈环路,业务专家希望能修改这个环路。这又是一个提供模板化界面的机会。


   正如 CMS 领域的情况一样,这些解决方案也不能包治百病。但是针对泛化的一组数据问题采用技术解决方案可以缓解数据科学家的瓶颈问题。一旦领域专家能够直接跟机器学习系统协作,我们就能够进入大数据的新时代—一个人和机器可以相互学习的新世纪。也许到了那个时候,大数据能解决的问题就能多于它制造的问题了。



推荐阅读
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • SocialFi 的未来:数据所有权、更公平的价值分配和行为数据的价值化
    SocialFi本质上是对Web2中心化社交平台的一次价值解构。撰文:Morty ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 为了评估精心优化的模型与策略在实际环境中的表现,Google对其实验框架进行了全面升级,旨在实现更高效、更精准和更快速的在线测试。新的框架支持更多的实验场景,提供更好的数据洞察,并显著缩短了实验周期,从而加速产品迭代和优化过程。 ... [详细]
  • TypeScript 实战分享:Google 工程师深度解析 TypeScript 开发经验与心得
    TypeScript 实战分享:Google 工程师深度解析 TypeScript 开发经验与心得 ... [详细]
  • 全面解析:Hadoop技术栈中的Linux操作系统概览
    全面解析:Hadoop技术栈中的Linux操作系统概览 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • 分布式一致性算法:Paxos 的企业级实战
    一、简介首先我们这个平台是ES专题技术的分享平台,众所周知,ES是一个典型的分布式系统。在工作和学习中,我们可能都已经接触和学习过多种不同的分布式系统了,各 ... [详细]
author-avatar
violet
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有