热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

数据结构与算法(二):寻找峰值

一维:峰值规定:a[i]a[i-1]anda[i]a[i+1],假定只存在一个峰值121950例如9就是一个峰值方法一:顺序遍历,时间复杂度O(n)方法二:分治策略,将列表折半

一维:

峰值规定:a[i]>a[i-1] and a[i]>a[i+1],假定只存在一个峰值

1 2 1 9 5 0

 

 

例如9就是一个峰值

方法一:顺序遍历,时间复杂度O(n)

方法二:分治策略,将列表折半查找,第一次查找n/2,左右两边哪一边大继续折半查找哪一边

def search_peak(alist):
    l=0
    r=len(alist)-1
    while l<=r:
        mid=(l+r)//2
        if mid==0 or mid==len(alist)-1:
            return mid
        else:
            if alist[mid]]:
                r=mid-1
            elif alist[mid]]:
                l=mid+1
            else:
                return mid
    return -1
    
print(search_peak([1,1,1,1,1,2,3,5,7,9]))

这种写法并未考虑相邻两数相等情况的处理,并且只能处理查找一个峰值的情况,如果查找多个峰值,即使利用二分查找复杂度仍然会降为O(n)

时间复杂度分析:

1,首先进行一次折半得:T(n) = T(n/2) + O(1) 

2,n为剩余元素,O(1)代表进行一次比较

3,再次进行折半得:T(n) =  T(n/4) + O(1) *2

4,以此类推得:T(n) = T(n/2^k)+O(1)*k  #注意前面是幂,后面乘

5,令n/2^k=1(表示最后剩下一个元素)得:k=log2n

所以T(n) = O(1)*log2n = O(logn)

 

 二维:

  1  
2 5 3
  4  

 

 

 

 

长为m,宽为n

例如5就是一个峰值,通过算法找出来

方法一:贪婪上升算法,选择一个位置开始遍历,然后利用深度优先搜索一条路搜下去,最坏情况下时间复杂度是O(n*m)

方法二:分治策略:先二分求每一行的峰值,确定行峰值位置后,再判断它是不是大于列位置的相邻上下元素,时间复杂度为O(logn)

方法三:田字分割,时间复杂度O(n)

1,先找田字中最大的元素,此处为7

技术图片

2,找到后判断是否为峰值,若不是,记录相邻四点中最大值的坐标,继续分割最大值坐标所在象限

技术图片

 3,当范围缩小到3*3时必定会找到局部峰值

 

 

数据结构与算法(二):寻找峰值


推荐阅读
  • MATLAB实现n条线段交点计算
    本文介绍了一种通过逐对比较线段来求解交点的简单算法。此外,还提到了一种基于排序的方法,但该方法较为复杂,尚未完全理解。文中详细描述了如何根据线段端点求交点,并判断交点是否在线段上。 ... [详细]
  • 高效解决应用崩溃问题!友盟新版错误分析工具全面升级
    友盟推出的最新版错误分析工具,专为移动开发者设计,提供强大的Crash收集与分析功能。该工具能够实时监控App运行状态,快速发现并修复错误,显著提升应用的稳定性和用户体验。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • VPX611是北京青翼科技推出的一款采用6U VPX架构的高性能数据存储板。该板卡搭载两片Xilinx Kintex-7系列FPGA作为主控单元,内置RAID控制器,支持多达8个mSATA盘,最大存储容量可达8TB,持续写入带宽高达3.2GB/s。 ... [详细]
  • 本文介绍如何通过SSH协议使用Xshell远程连接到Ubuntu系统。为了实现这一目标,需要确保Ubuntu系统已安装并配置好SSH服务器,并保证网络连通性。 ... [详细]
  • 落樱3D v0.5是一款在Android平台上发布的3D美少女格斗游戏,本次更新带来了多项新功能和优化。 ... [详细]
  • 优化局域网SSH连接延迟问题的解决方案
    本文介绍了解决局域网内SSH连接到服务器时出现长时间等待问题的方法。通过调整配置和优化网络设置,可以显著缩短SSH连接的时间。 ... [详细]
  • 回顾2014年,我经历了多个重要项目和学习阶段,取得了一定的成绩。新的一年即将到来,希望能在更多项目实践中继续成长。 ... [详细]
  • HDU 1394:线段树优化求解逆序对问题
    本文介绍如何使用线段树高效求解排列中的逆序对问题。通过单点增减和区间求和操作,线段树能够快速处理此类问题,并提供了一种替代树状数组的解决方案。 ... [详细]
  • Startup 类配置服务和应用的请求管道。Startup类ASP.NETCore应用使用 Startup 类,按照约定命名为 Startup。 Startup 类:可选择性地包括 ... [详细]
  • TechStride 网站
    TechStride 成立于2014年初,致力于互联网前沿技术、产品创意及创业内容的聚合、搜索、学习与展示。我们旨在为互联网从业者提供更高效的新技术搜索、学习、分享和产品推广平台。 ... [详细]
  • 本文将带领读者深入了解Android系统源码在手机中的实际表现,通过详细的步骤和专业的解释,帮助你更好地理解Android系统的底层运作机制。 ... [详细]
  • Qt中QSpinBox与QSlider的联动实现
    本文介绍如何在Qt框架下将QSpinBox和QSlider组件进行联动,使用户在拖动滑块或修改文本框中的数值时,两个组件能同步更新,从而提供更加直观和便捷的用户体验。 ... [详细]
author-avatar
hanhan2502883243
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有