热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

数据结构与算法之LRU缓存算法

LRU是什么LRU(Leastrecentlyused,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想

LRU是什么

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。LRU作为页面置换算法,常见的页面置换算法如下

常见的页面置换算法有如下几种:


  • LRU 最近最久未使用
  • FIFO 先进先出置换算法 类似队列
  • OPT 最佳置换算法 (理想中存在的)
  • NRU Clock置换算法
  • LFU 最少使用置换算法
  • PBA 页面缓冲算法

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下
LRU简单描述

新数据插入到链表头部;


  • 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
  • 当链表满的时候,将链表尾部的数据丢弃。

【命中率】
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
【复杂度】
实现简单。
【代价】
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。


LRU-K原理

LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:
LRU-K


  • 数据第一次被访问,加入到访问历史列表;
  • 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;
  • 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;
  • 缓存数据队列中被再次访问后,重新排序;
  • 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。
  • LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

【命中率】
LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。
【复杂度】
LRU-K队列是一个优先级队列,算法复杂度和代价比较高。
【代价】
由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。
LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。


URL-Two queues原理

Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。
当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

LRU-2queues

新访问的数据插入到FIFO队列;


  • 如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;
  • 如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;
  • 如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;
    LRU队列淘汰末尾的数据。
    【命中率】
    2Q算法的命中率要高于LRU。
    【复杂度】
    需要两个队列,但两个队列本身都比较简单。
    【代价】
    FIFO和LRU的代价之和。
    2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。

Multi Queue原理

MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。
MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如
详细的算法结构图如下,Q0,Q1…Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:
Multi Queues

如上图,算法详细描述如下:


  • 新插入的数据放入Q0;
  • 每个队列按照LRU管理数据;
  • 当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;
  • 为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;
  • 需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;
  • 如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;
    Q-history按照LRU淘汰数据的索引。
    【命中率】
    MQ降低了“缓存污染”带来的问题,命中率比LRU要高。
    【复杂度】
    MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。
    【代价】
    MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。
    注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。

参考链接

1.LRU算法缓存算法实现

2.LRU算法


推荐阅读
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 深入解析TCP/IP五层协议
    本文详细介绍了TCP/IP五层协议模型,包括物理层、数据链路层、网络层、传输层和应用层。每层的功能及其相互关系将被逐一解释,帮助读者理解互联网通信的原理。此外,还特别讨论了UDP和TCP协议的特点以及三次握手、四次挥手的过程。 ... [详细]
  • FinOps 与 Serverless 的结合:破解云成本难题
    本文探讨了如何通过 FinOps 实践优化 Serverless 应用的成本管理,提出了首个 Serverless 函数总成本估计模型,并分享了多种有效的成本优化策略。 ... [详细]
  • MySQL 高性能实战教程
    本课程深入探讨 MySQL 的架构、性能调优、索引优化、查询优化及高可用性等关键领域。通过实际案例和详细讲解,帮助学员掌握提升 MySQL 数据库性能的方法与技巧。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 本文详细介绍了Grand Central Dispatch (GCD) 的核心概念和使用方法,探讨了任务队列、同步与异步执行以及常见的死锁问题。通过具体示例和代码片段,帮助开发者更好地理解和应用GCD进行多线程开发。 ... [详细]
  • 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性
    Java并发编程实践目录并发编程01——ThreadLocal并发编程02——ConcurrentHashMap并发编程03——阻塞队列和生产者-消费者模式并发编程04——闭锁Co ... [详细]
  • 深入解析RDMA中的队列对(Queue Pair)
    本文将详细探讨RDMA架构中的关键组件——队列对(Queue Pair,简称QP),包括其基本概念、硬件与软件实现、QPC的作用、QPN的分配机制以及用户接口和状态机。通过这些内容,读者可以更全面地理解QP在RDMA通信中的重要性和工作原理。 ... [详细]
  • 优化Flask应用的并发处理:解决Mysql连接过多问题
    本文探讨了在Flask应用中通过优化后端架构来应对高并发请求,特别是针对Mysql 'too many connections' 错误的解决方案。我们将介绍如何利用Redis缓存、Gunicorn多进程和Celery异步任务队列来提升系统的性能和稳定性。 ... [详细]
  • 深入理解Java多线程并发处理:基础与实践
    本文探讨了Java中的多线程并发处理机制,从基本概念到实际应用,帮助读者全面理解并掌握多线程编程技巧。通过实例解析和理论阐述,确保初学者也能轻松入门。 ... [详细]
author-avatar
童月圆524
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有