热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

数据分析常用网站持续更新!!!

大数据比赛赛事公告"优易数据杯中国气象数据分析"R语言基石TheRProjectforStatisticalComputingR
数据分析常用网站
欢迎大家补充,直接在下面留言就可以了。不限于R,excel,sql,欢迎Python学者和统计学学者。
日后会陆续贴出一些有大数据分析项目的比赛,欢迎组队

大数据比赛

赛事公告

  • 优易数据杯- 中国气象数据分析

R语言

基石

  • The R Project for Statistical Computing https://www.r-project.org/
  • Rstudio https://www.rstudio.com
  • r-bloggers http://www.r-bloggers.com/
  • 汇总R语言 (这一个够用一年的) https://github.com/qinwf/awesome-R

请大家关注   这是github上很多人一直维护的(外国网站和github居多,但是很有用!!!)

Awesome R 转载于https://github.com/qinwf/awesome-R

Awesome

A curated list of awesome R packages and tools. Inspired by awesome-machine-learning.

For better navigation, see https://awesome-r.com

heart for [Top 50](https://github.com/rstudio/RStartHere/blob/master/top_downloads_2016/top_packages) CRAN downloaded packages or repos with 400+ star
  • Awesome R
    • Integrated Development Environments
    • Syntax
    • Data Manipulation
    • Graphic Displays
    • Html Widgets
    • Reproducible Research
    • Web Technologies and Services
    • Parallel Computing
    • High Performance
    • Language API
    • Database Management
    • Machine Learning
    • Natural Language Processing
    • Bayesian
    • Optimization
    • Finance
    • Bioinformatics
    • Network Analysis
    • R Development
    • Logging
    • Other Tools
    • Other Interpreters
    • Learning R
  • Resources
    • Websites
    • Books
    • Podcasts
    • Reference Cards
    • MOOCs
    • Lists
  • Other Awesome Lists
  • Contributing

Integrated Development Environments

Integrated Development Environment

  • RStudio heart - A powerful and productive user interface for R. Works great on Windows, Mac, and Linux.
  • Emacs + ESS - Emacs Speaks Statistics is an add-on package for emacs text editors.
  • Sublime Text + R-Box - Add-on package for Sublime Text 2/3.
  • TextMate + r.tmblundle - Add-on package for TextMate 1/2.
  • StatET - An Eclipse based IDE for R.
  • Revolution R Enterprise - Revolution R would be offered free to academic users and commercial software would focus on big data, large scale multiprocessor functionality.
  • R Commander - A package that provides a basic graphical user interface.
  • IRkernel heart - R kernel for Jupyter.
  • Deducer - A Menu driven data analysis GUI with a spreadsheet like data editor.
  • Radiant - A platform-independent browser-based interface for business analytics in R, based on the Shiny.
  • Vim-R - Vim plugin for R.
  • Nvim-R - Neovim plugin for R.
  • JASP - A complete package for both Bayesian and Frequentist methods, that is familiar to users of SPSS.
  • Bio7 - A IDE contains tools for model creation, scientific image analysis and statistical analysis for ecological modelling.
  • RTVS - R Tools for Visual Studio.

Syntax

Packages change the way you use R.

  • magrittr heart - Let\'s pipe it.
  • pipeR - Multi-paradigm Pipeline Implementation.
  • lambda.r - Functional programming and simple pattern matching in R.
  • purrr - A FP package for R in the spirit of underscore.js.

Data Manipulation

Packages for cooking data.

  • dplyr heart - Fast data frames manipulation and database query.
  • data.table heart - Fast data manipulation in a short and flexible syntax.
  • reshape2 heart - Flexible rearrange, reshape and aggregate data.
  • readr - A fast and friendly way to read tabular data into R.
  • haven - Improved methods to import SPSS, Stata and SAS files in R.
  • tidyr - Easily tidy data with spread and gather functions.
  • broom - Convert statistical analysis objects into tidy data frames.
  • rlist - A toolbox for non-tabular data manipulation with lists.
  • jsonlite - A robust and quick way to parse JSON files in R.
  • ff - Data structures designed to store large datasets.
  • lubridate - A set of functions to work with dates and times.
  • stringi heart - ICU based string processing package.
  • stringr heart - Consistent API for string processing, built on top of stringi.
  • bigmemory - Shared memory and memory-mapped matrices. The big* pacakges provide additional tools including linear models (biglm) and Random Forests (bigrf).
  • fuzzyjoin - Join tables together on inexact matching.

Graphic Displays

Packages for showing data.

  • ggplot2 heart - An implementation of the Grammar of Graphics.
  • ggfortify - A unified interface to ggplot2 popular statistical packages using one line of code.
  • ggrepel - Repel overlapping text labels away from each other.
  • ggalt - Extra Coordinate Systems, Geoms and Statistical Transformations for ggplot2.
  • ggplot2 Extensions - Showcases of ggplot2 extensions.
  • lattice - A powerful and elegant high-level data visualization system.
  • rgl - 3D visualization device system for R.
  • Cairo - R graphics device using cairo graphics library for creating high-quality display output.
  • extrafont - Tools for using fonts in R graphics.
  • showtext - Enable R graphics device to show text using system fonts.
  • animation - A simple way to produce animated graphics in R, using ImageMagick.
  • gganimate - Create easy animations with ggplot2.
  • misc3d - Powerful functions to deal with 3d plots, isosurfaces, etc.
  • xkcd - Use xkcd style in graphs.
  • imager - An image processing package based on CImg library to work with images and display them.

HTML Widgets

Packages for interactive visualizations.

  • d3heatmap - Interactive heatmaps with D3.
  • DataTables - Displays R matrices or data frames as interactive HTML tables.
  • DiagrammeR heart - Create JS graph diagrams and flowcharts in R.
  • dygraphs - Charting time-series data in R.
  • formattable - Formattable Data Structures.
  • ggvis - Interactive grammar of graphics for R.
  • Leaflet - One of the most popular Javascript libraries interactive maps.
  • MetricsGraphics - Enables easy creation of D3 scatterplots, line charts, and histograms.
  • networkD3 - D3 Javascript Network Graphs from R.
  • scatterD3 - Interactive scatterplots with D3.
  • plotly heart - Interactive ggplot2 and Shiny plotting with plot.ly.
  • rCharts heart - Interactive JS Charts from R.
  • rbokeh - R Interface to Bokeh.
  • threejs - Interactive 3D scatter plots and globes.

Reproducible Research

Packages for literate programming.

  • knitr heart - Easy dynamic report generation in R.
  • xtable - Export tables to LaTeX or HTML.
  • rapport - An R templating system.
  • rmarkdown heart - Dynamic documents for R.
  • slidify - Generate reproducible html5 slides from R markdown.
  • Sweave - A package designed to write LaTeX reports using R.
  • texreg - Formatting statistical models in LaTex and HTML.
  • checkpoint - Install packages from snapshots on the checkpoint server.
  • brew - Pre-compute data to enhance your report templates. Can be combined with knitr.
  • ReporteRs - An R package to generate Microsoft Word, Microsoft PowerPoint and HTML reports.
  • bookdown - Authoring Books with R Markdown.

Web Technologies and Services

Packages to surf the web.

  • Web Technologies List - Information about how to use R and the world wide web together.
  • shiny heart - Easy interactive web applications with R.
  • RCurl - General network (HTTP/FTP/...) client interface for R.
  • httr heart - User-friendly RCurl wrapper.
  • httpuv - HTTP and WebSocket server library.
  • XML heart - Tools for parsing and generating XML within R.
  • rvest heart - Simple web scraping for R, using CSSSelect or XPath syntax.
  • OpenCPU heart - HTTP API for R.
  • Rfacebook - Access to Facebook API via R.
  • RSiteCatalyst - R client library for the Adobe Analytics.

Parallel Computing

Packages for parallel computing.

  • parallel - R started with release 2.14.0 which includes a new package parallel incorporating (slightly revised) copies of packages multicore and snow.
  • Rmpi - Rmpi provides an interface (wrapper) to MPI APIs. It also provides interactive R slave environment.
  • foreach heart - Executing the loop in parallel.
  • SparkR heart - R frontend for Spark.
  • DistributedR - A scalable high-performance platform from HP Vertica Analytics Team.
  • ddR - Provides distributed data structures and simplifies distributed computing in R.

High Performance

Packages for making R faster.

  • Rcpp heart - Rcpp provides a powerful API on top of R, make function in R extremely faster.
  • Rcpp11 - Rcpp11 is a complete redesign of Rcpp, targetting C++11.
  • compiler - speeding up your R code using the JIT

Language API

Packages for other languages.

  • rJava - Low-level R to Java interface.
  • jvmr - Integration of R, Java, and Scala.
  • rJython - R interface to Python via Jython.
  • rPython - Package allowing R to call Python.
  • runr - Run Julia and Bash from R.
  • RJulia - R package Call Julia.
  • RinRuby - a Ruby library that integrates the R interpreter in Ruby.
  • R.matlab - Read and write of MAT files together with R-to-MATLAB connectivity.
  • RcppOctave - Seamless Interface to Octave and Matlab.
  • RSPerl - A bidirectional interface for calling R from Perl and Perl from R.
  • V8 - Embedded Javascript Engine.
  • htmlwidgets - Bring the best of Javascript data visualization to R.
  • rpy2 - Python interface for R.

Database Management

Packages for managing data.

  • RODBC - ODBC database access for R.
  • DBI - Defines a common interface between the R and database management systems.
  • elastic - Wrapper for the Elasticsearch HTTP API
  • mongolite - Streaming Mongo Client for R
  • RMySQL - R interface to the MySQL database.
  • ROracle - OCI based Oracle database interface for R.
  • RPostgreSQL - R interface to the PostgreSQL database system.
  • RSQLite - SQLite interface for R
  • RJDBC - Provides access to databases through the JDBC interface.
  • rmongodb - R driver for MongoDB.
  • rredis - Redis client for R.
  • RCassandra - Direct interface (not Java) to the most basic functionality of Apache Cassanda.
  • RHive - R extension facilitating distributed computing via Apache Hive.
  • RNeo4j - Neo4j graph database driver.

Machine Learning

Packages for making R cleverer.

  • AnomalyDetection heart - AnomalyDetection R package from Twitter.
  • ahaz - Regularization for semiparametric additive hazards regression.
  • arules - Mining Association Rules and Frequent Itemsets
  • bigrf - Big Random Forests: Classification and Regression Forests for
    Large Data Sets
  • bigRR - Generalized Ridge Regression (with special advantage for p >> n
    cases)
  • bmrm - Bundle Methods for Regularized Risk Minimization Package
  • Boruta - A wrapper algorithm for all-relevant feature selection
  • BreakoutDetection - Breakout Detection via Robust E-Statistics from Twitter.
  • bst - Gradient Boosting
  • CausalImpact - Causal inference using Bayesian structural time-series models.
  • C50 - C5.0 Decision Trees and Rule-Based Models
  • caret heart - Classification and Regression Training
  • Clever Algorithms For Machine Learning
  • CORElearn - Classification, regression, feature evaluation and ordinal
    evaluation
  • CoxBoost - Cox models by likelihood based boosting for a single survival
    endpoint or competing risks
  • Cubist - Rule- and Instance-Based Regression Modeling
  • e1071 - Misc Functions of the Department of Statistics (e1071), TU Wien
  • earth - Multivariate Adaptive Regression Spline Models
  • elasticnet - Elastic-Net for Sparse Estimation and Sparse PCA
  • ElemStatLearn - Data sets, functions and examples from the book: "The Elements
    of Statistical Learning, Data Mining, Inference, and
    Prediction" by Trevor Hastie, Robert Tibshirani and Jerome
    Friedman
  • evtree - Evolutionary Learning of Globally Optimal Trees
  • FSelector - A feature selection framework, based on subset-search or feature ranking approches.
  • frbs - Fuzzy Rule-based Systems for Classification and Regression Tasks
  • GAMBoost - Generalized linear and additive models by likelihood based
    boosting
  • gamboostLSS - Boosting Methods for GAMLSS
  • gbm - Generalized Boosted Regression Models
  • glmnet heart - Lasso and elastic-net regularized generalized linear models
  • glmpath - L1 Regularization Path for Generalized Linear Models and Cox
    Proportional Hazards Model
  • GMMBoost - Likelihood-based Boosting for Generalized mixed models
  • grplasso - Fitting user specified models with Group Lasso penalty
  • grpreg - Regularization paths for regression models with grouped
    covariates
  • h2o heart - Deeplearning, Random forests, GBM, KMeans, PCA, GLM
  • hda - Heteroscedastic Discriminant Analysis
  • ipred - Improved Predictors
  • kernlab - kernlab: Kernel-based Machine Learning Lab
  • klaR - Classification and visualization
  • kohonen - Supervised and Unsupervised Self-Organising Maps.
  • lars - Least Angle Regression, Lasso and Forward Stagewise
  • lasso2 - L1 constrained estimation aka ‘lasso’
  • LiblineaR - Linear Predictive Models Based On The Liblinear C/C++ Library
  • lme4 heart - Mixed-effects models
  • LogicReg - Logic Regression
  • maptree - Mapping, pruning, and graphing tree models
  • mboost - Model-Based Boosting
  • Machine Learning For Hackers
  • mvpart - Multivariate partitioning
  • MXNet heart - MXNet brings flexible and efficient GPU computing and state-of-art deep learning to R.
  • ncvreg - Regularization paths for SCAD- and MCP-penalized regression
    models
  • nnet - eed-forward Neural Networks and Multinomial Log-Linear Models
  • oblique.tree - Oblique Trees for Classification Data
  • pamr - Pam: prediction analysis for microarrays
  • party - A Laboratory for Recursive Partytioning
  • partykit - A Toolkit for Recursive Partytioning
  • penalized - L1 (lasso and fused lasso) and L2 (ridge) penalized estimation
    in GLMs and in the Cox model
  • penalizedLDA - Penalized classification using Fisher\'s linear discriminant
  • penalizedSVM - Feature Selection SVM using penalty functions
  • quantregForest - quantregForest: Quantile Regression Forests
  • randomForest - randomForest: Breiman and Cutler\'s random forests for classification and regression.
  • randomForestSRC - randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC).
  • rattle - Graphical user interface for data mining in R.
  • rda - Shrunken Centroids Regularized Discriminant Analysis
  • rdetools - Relevant Dimension Estimation (RDE) in Feature Spaces
  • REEMtree - Regression Trees with Random Effects for Longitudinal (Panel)
    Data
  • relaxo - Relaxed Lasso
  • rgenoud - R version of GENetic Optimization Using Derivatives
  • rgp - R genetic programming framework
  • Rmalschains - Continuous Optimization using Memetic Algorithms with Local
    Search Chains (MA-LS-Chains) in R
  • rminer - Simpler use of data mining methods (e.g. NN and SVM) in
    classification and regression
  • ROCR - Visualizing the performance of scoring classifiers
  • RoughSets - Data Analysis Using Rough Set and Fuzzy Rough Set Theories
  • rpart - Recursive Partitioning and Regression Trees
  • RPMM - Recursively Partitioned Mixture Model
  • RSNNS - Neural Networks in R using the Stuttgart Neural Network
    Simulator (SNNS)
  • RWeka - R/Weka interface
  • RXshrink - RXshrink: Maximum Likelihood Shrinkage via Generalized Ridge or Least
    Angle Regression
  • sda - Shrinkage Discriminant Analysis and CAT Score Variable Selection
  • SDDA - Stepwise Diagonal Discriminant Analysis
  • SuperLearner and subsemble - Multi-algorithm ensemble learning packages.
  • svmpath - svmpath: the SVM Path algorithm
  • tgp - Bayesian treed Gaussian process models
  • tree - Classification and regression trees
  • varSelRF - Variable selection using random forests
  • xgboost heart - eXtreme Gradient Boosting Tree model, well known for its speed and performance.

Natural Language Processing

Packages for Natural Language Processing.

  • text2vec - Fast Text Mining Framework for Vectorization and Word Embeddings.
  • tm - A comprehensive text mining framework for R.
  • openNLP - Apache OpenNLP Tools Interface.
  • koRpus - An R Package for Text Analysis.
  • zipfR - Statistical models for word frequency distributions.
  • NLP - Basic functions for Natural Language Processing.
  • LDAvis - Interactive visualization of topic models.
  • topicmodels - Topic modeling interface to the C code developed by by David M. Blei for Topic Modeling (Latent Dirichlet Allocation (LDA), and Correlated Topics Models (CTM)).
  • syuzhet - Extracts sentiment from text using three different sentiment dictionaries.
  • SnowballC - Snowball stemmers based on the C libstemmer UTF-8 library.
  • quanteda - R functions for Quantitative Analysis of Textual Data.
  • Topic Models Resources - Topic Models learning and R related resources.
  • NLP for :cn: - NLP related resources in R. @Chinese

Bayesian

Packages for Bayesian Inference.

  • coda - Output analysis and diagnostics for MCMC.
  • mcmc - Markov Chain Monte Carlo.
  • MCMCpack - Markov chain Monte Carlo (MCMC) Package.
  • R2WinBUGS - Running WinBUGS and OpenBUGS from R / S-PLUS.
  • BRugs - R interface to the OpenBUGS MCMC software.
  • rjags - R interface to the JAGS MCMC library.
  • rstan heart - R interface to the Stan MCMC software.

Optimization

Packages for Optimization.

  • minqa - Derivative-free optimization algorithms by quadratic approximation.
  • nloptr - NLopt is a free/open-source library for nonlinear optimization.
  • lpSolve - Interface to Lp_solve to Solve Linear/Integer Programs.

Finance

Packages for dealing with money.

  • quantmod heart - Quantitative Financial Modelling & Trading Framework for R.
  • TTR - Functions and data to construct technical trading rules with R.
  • PerformanceAnalytics - Econometric tools for performance and risk analysis.
  • zoo heart - S3 Infrastructure for Regular and Irregular Time Series.
  • xts - eXtensible Time Series.
  • tseries - Time series analysis and computational finance.
  • fAssets - Analysing and Modelling Financial Assets.

Bioinformatics

Packages for processing biological datasets.

  • Bioconductor heart - Tools for the analysis and comprehension of high-throughput genomic data.
  • genetics - Classes and methods for handling genetic data.
  • gap - An integrated package for genetic data analysis of both population and family data.
  • ape - Analyses of Phylogenetics and Evolution.
  • pheatmap - Pretty heatmaps made easy.

Network Analysis

Packages to construct, analyze and visualize network data.

  • Network Analysis List - Network Analysis related resources.
  • igraph heart - A collection of network analysis tools.
  • network - Basic tools to manipulate relational data in R.
  • sna - Basic network measures and visualization tools.
  • networkDynamic - Support for dynamic, (inter)temporal networks.
  • ndtv - Tools to construct animated visualizations of dynamic network data in various formats.
  • statnet - The project behind many R network analysis packages.
  • ergm - Exponential random graph models in R.
  • latentnet - Latent position and cluster models for network objects.
  • tnet - Network measures for weighted, two-mode and longitudinal networks.
  • rgexf - Export network objects from R to GEXF, for manipulation with network software like Gephi or Sigma.
  • visNetwork - Using vis.js library for network visualization.

R Development

Packages for packages.

  • Package Development List - R packages to improve package development.
  • devtools heart - Tools to make an R developer\'s life easier.
  • testthat heart - An R package to make testing fun.
  • R6 heart - simpler, faster, lighter-weight alternative to R\'s built-in classes.
  • pryr heart - Make it easier to understand what\'s going on in R.
  • roxygen heart - Describe your functions in comments next to their definitions.
  • lineprof - Visualise line profiling results in R.
  • packrat - Make your R projects more isolated, portable, and reproducible.
  • installr - Functions for installing softwares from within R (for Windows).
  • import - An import mechanism for R.
  • Rocker heart - R configurations for Docker.
  • RStudio Addins - List of RStudio addins.
  • drat - Creation and use of R repositories on GitHub or other repos.
  • covr - Test coverage for your R package and (optionally) upload the results to coveralls or codecov.
  • lintr - Static code analysis for R to enforce code style.
  • staticdocs - Generate static html documentation for an R package.

Logging

Packages for Logging

  • futile.logger - A logging package in R similar to log4j
  • log4r - A log4j derivative for R
  • logging - A logging package emulating the python logging package.

Other Tools

Handy Tools for R

  • git2r - Gives you programmatic access to Git repositories from R.

Other Interpreters

Alternative R engines.

  • CXXR - Refactorising R into C++.
  • fastR - FastR is an implementation of the R Language in Java atop Truffle and Graal.
  • incanter - Clojure-based, R-like statistical computing and graphics environment for the JVM with Lisp spirit.
  • pqR - a "pretty quick" implementation of R
  • renjin - a JVM-based interpreter for R.
  • rho - Refactor the interpreter of the R language into a fully-compatible, efficient, VM for R.
  • riposte - a fast interpreter and JIT for R.
  • RRO - Revolution R Open.
  • TERR - TIBCO Enterprise Runtime for R.

Learning R

Packages for Learning R.

  • swirl - An interactive R tutorial directly in your R console.
  • DataScienceR - a list of R tutorials for Data Science, NLP and Machine Learning.

Resources

Where to discover new R-esources.

Websites

  • R-project - The R Project for Statistical Computing.
  • R Bloggers - There are people scattered across the Web who blog about R. This is simply an aggregator of many of those feeds.
  • DataCamp - Learn R data analytics online.
  • Quick-R - An excellent quick reference.
  • Advanced R heart - An online version of the Advanced R book.
  • Efficient R Programming - An online home of the O’Reilly book: Efficient R Programming.
  • CRAN Task Views - Task Views for CRAN packages.
  • The R Programming Wikibook - A collaborative handbook for R.
  • R-users - A job board for R users (and the people who are looking to hire them)
  • R Cookbook - A problem-oriented website that supports the R Graphics Cookbook.
  • tryR - A quick course for getting started with R.

Books

  • R Books List - List of R Books.
  • The Art of R Programming - It\'s a good resource for systematically learning fundamentals such as types of objects, control statements, variable scope, classes and debugging in R.
  • Free Books - CRAN Contributed Documentation in many languages.
  • R Cookbook - A quick and simple introduction to conducting many common statistical tasks with R.
  • Books written as part of the Johns Hopkins Data Science Specialization:
    • Exploratory Data Analysis with R - Basic analytical skills for all sorts of data in R.
    • R Programming for Data Science - More advanced data analysis that relies on R programming.
    • Report Writing for Data Science in R - R-based methods for reproducible research and report generation.
  • R Packages - A book (in paper and website formats) on writing R packages.
  • R in Action - This book aims at all levels of users, with sections for beginning, intermediate and advanced R ranging from "Exploring R data structures" to running regressions and conducting factor analyses.
  • Use R! - This series of inexpensive and focused books from Springer publish shorter books aimed at practitioners. Books can discuss the use of R in a particular subject area, such as Bayesian networks, ggplot2 and Rcpp.
  • R for SAS and SPSS users - An excelllent resource for users already familiar with SAS or SPSS.
  • An Introduction to R - A very good introductory text on R, also covers some advanced topics.
  • Introduction to Statistical Learning with Application in R - A simplified and "operational" version of The Elements of Statistical Learning. Free softcopy provided by its authors.
  • The R Inferno - Patrick Burns gives insight into R\'s ins and outs along with its quirks!

Podcasts

  • Not So Standard Deviations - The Data Science Podcast.
    • @Roger Peng and @Hilary Parker.
  • R World News - R World News helps you keep up with happenings within the R community.
    • @Bob Rudis and @Jay Jacobs.
  • The R-Podcast - Giving practical advice on how to use R.
    • @Eric Nantz.
  • R Talk - News and discussions of statistical software and language R.
    • @Oliver Keyes, @Jasmine Dumas, @Ted Hart and @Mikhail Popov.

Reference Cards

  • R Reference Card 2.0 - Material from R for Beginners by permission of Emmanuel Paradis (Version 2 by Matt Baggott).
  • Regression Analysis Refcard - R Reference Card for Regression Analysis.
  • Reference Card for ESS - Reference Card for ESS.
  • R Markdown Cheat sheet - Quick reference guide for writing reports with R Markdown.
  • Shiny Cheat sheet - Quick reference guide for building Shiny apps.
  • ggplot2 Cheat sheet - Quick reference guide for data visualisation with ggplot2.
  • devtools Cheat sheet - Quick reference guide to package development in R.

MOOCs

Massive open online courses.

  • The Analytics Edge - Hands-on introduction to data analysis with R from MITx.
  • Johns Hopkins University Data Science Specialization - 9 courses including: Introduction to R, literate analysis tools, Shiny and some more.
  • HarvardX Biomedical Data Science - Introduction to R for the Life Sciences.
  • Explore Statistics with R - Covers introduction, data handling and statistical analysis in R.

Lists

Great resources for learning domain knowledge.

  • Books - List of R Books.
  • DataScienceR - a list of R tutorials for Data Science, NLP and Machine Learning.
  • ggplot2 Extensions - Showcases of ggplot2 extensions.
  • Natural Language Processing :cn: - NLP related resources in R. @Chinese
  • Network Analysis - Network Analysis related resources.
  • Open Data - Using R to obtain, parse, manipulate, create, and share open data.
  • Posts - Great R blog posts or Rticles.
  • Package Development - R packages to improve package development.
  • R Project Conferences - Information about useR! Conferences and DSC Conferences.
  • RStartHere - A guide to some of the most useful R packages, organized by workflow.
  • RStudio Addins - List of RStudio addins.
  • Topic Models - Topic Models learning and R related resources.
  • Web Technologies - Information about how to use R and the world wide web together.

Other Awesome Lists

  • awesome-awesomeness
  • lists

excel

  • excelhome http://www.excelhome.net/

  • VBA http://www.excelhome.net/video/excel/vba/list_81_2.html

  • 经管之家 http://bbs.pinggu.org/


推荐阅读
  • SSAS入门指南:基础知识与核心概念解析
    ### SSAS入门指南:基础知识与核心概念解析Analysis Services 是一种专为决策支持和商业智能(BI)解决方案设计的数据引擎。该引擎能够为报告和客户端应用提供高效的分析数据,并支持在多维数据模型中构建高性能的分析应用。通过其强大的数据处理能力和灵活的数据建模功能,Analysis Services 成为了现代 BI 系统的重要组成部分。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • jQuery Flot 数据可视化插件:高效绘制图表的专业工具
    jQuery Flot 是一款高效的数据可视化插件,专为绘制各种图表而设计。该工具支持丰富的图表类型和自定义选项,适用于多种应用场景。用户可以通过其官方网站获取示例代码和下载资源,以便快速上手和使用。 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 基于iSCSI的SQL Server 2012群集测试(一)SQL群集安装
    一、测试需求介绍与准备公司计划服务器迁移过程计划同时上线SQLServer2012,引入SQLServer2012群集提高高可用性,需要对SQLServ ... [详细]
  • com.sun.javadoc.PackageDoc.exceptions()方法的使用及代码示例 ... [详细]
  • MySQL 5.7 学习指南:SQLyog 中的主键、列属性和数据类型
    本文介绍了 MySQL 5.7 中主键(Primary Key)和自增(Auto-Increment)的概念,以及如何在 SQLyog 中设置这些属性。同时,还探讨了数据类型的分类和选择,以及列属性的设置方法。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 微信平台通过盛派SDK(sdk.weixin.senparc.com)允许服务号和订阅号使用appId和token读取关注用户的个人信息。然而,这一过程需严格遵守隐私保护和数据安全的相关规定,确保用户数据的安全性和隐私性。 ... [详细]
  • Golomb 编码是一种高效的变长编码技术,专门用于整数的压缩。该方法通过预定义的参数 \( M \) 将输入整数分解为商 \( q \) 和余数 \( r \) 两部分。具体而言,输入整数除以 \( M \) 得到商 \( q \) 和余数 \( r \),其中商 \( q \) 采用一元编码表示,而余数 \( r \) 则使用二进制编码。这种编码方式在数据压缩和信息传输中具有显著的优势,特别是在处理具有特定概率分布的数据时表现出色。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 利用 Python 中的 Altair 库实现数据抖动的水平剥离分析 ... [详细]
  • STAR: 转录组数据分析中的高效比对工具介绍
    欢迎关注“生信修炼手册”!STAR 是一款专为 RNA-seq 数据设计的高效比对工具,以其卓越的速度和高灵敏度著称。该软件在处理大规模转录组数据时表现出色,能够显著提高比对效率和准确性。此外,GATK 推荐使用 STAR 进行预处理步骤,以确保后续分析的可靠性。 ... [详细]
  • 深入解析经典卷积神经网络及其实现代码
    深入解析经典卷积神经网络及其实现代码 ... [详细]
author-avatar
广东抱米花_冰月
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有