热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

推荐一条高效python学习之路,让你从小白到熟练

!(如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容

![图片](https://upload-images.jianshu.io/upload_images/25205170-23a545bdf41ac694?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有的人认为学爬虫必须精通 Python,然后**哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据**;有的人则认为先要掌握网页的知识,遂**开始 HTMLCSS,结果入了前端的坑**,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现。但建议你从**一开始就要有一个具体的目标**,你要爬取哪个网站的哪些数据,达到什么量级。

**那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。**这里给你一条平滑的、零基础快速入门的学习路径。

1.学习Python包并实现基本的爬虫过程

2.掌握各种技巧,应对特殊网站的反爬措施

3.学习scrapy,搭建工程化爬虫

4.学习数据库知识,应对大规模数据存储与提取

5.分布式爬虫,实现大规模并发采集

 – ❶ –

**学习 Python 包并实现基本的爬虫过程**

大部分爬虫都是按**“发送请求——获得页面——解析页面——抽取并储存内容”**这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,**建议从requests+Xpath 开始**,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,**一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了**。

– ❷ –

**掌握各种技巧,应对特殊网站的反爬措施**

当然,爬虫过程中也会经历一些绝望,比如被封IP、比如各种奇怪的验证码、字体加密、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如**访问频率控制、使用代理IP池、字体反加密、抓包、验证码的OCR处理等等**。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

– ❸ – 

**学习 scrapy,搭建工程化的爬虫**

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

**学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。**

– ❹ –

**学习数据库基础,应对大规模数据存储**

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

**MongoDB 可以方便你去存储一些非结构化的数据****,比如各种评论的文本,图片的链接等等。**你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是**数据如何入库、如何进行提取**,在需要的时候再学习就行。

 – ❺ –

**分布式爬虫,实现大规模并发采集**

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:**分布式爬虫**。

分布式这个东西,听起来很恐怖,**但其实就是利用多线程的原理让多个爬虫同时工作****,需要你掌握 Scrapy + MongoDB + Redis 这三种工具**。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现更加自动化的数据获取。

– **如何高效学习 -**

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,**尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好**。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,**高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。**

当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

不过不用担心,我们准备了一门非常系统的爬虫课程,除了为你提供一条清晰、无痛的学习路径,我们甄选了**最实用的学习资源**以及**庞大的主流爬虫案例库**。短时间的学习,你就能够很好地掌握爬虫这个技能,获取你想得到的数据。

####推荐一下我建的python学习交流扣扣qun:850973621,群里有免费的视频教程,开发工具、
####电子书籍、项目源码分享。一起交流学习,一起进步!

![QQ截图20201205144328.png](https://upload-images.jianshu.io/upload_images/25205170-8422ea26547f2be9.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)



推荐阅读
  • 2019年后蚂蚁集团与拼多多面试经验详述与深度剖析
    2019年后蚂蚁集团与拼多多面试经验详述与深度剖析 ... [详细]
  • 如果你对项目管理和系统架构感兴趣,欢迎关注微信订阅号“softjg”,加入我们这个PM和架构师的大家庭。本文将探讨编写高质量软件架构文档的重要性及其优势。良好的架构文档不仅能够促进不同利益相关者之间的沟通与理解,还能为项目的长期维护和扩展提供坚实的基础。通过详细记录系统的设计决策和关键组件,架构文档能够确保团队成员在项目周期内保持一致性和高效协作。 ... [详细]
  • 修复一个 Bug 竟耗时两天?真的有那么复杂吗?
    修复一个 Bug 竟然耗费了两天时间?这背后究竟隐藏着怎样的复杂性?本文将深入探讨这个看似简单的 Bug 为何会如此棘手,从代码层面剖析问题根源,并分享解决过程中遇到的技术挑战和心得。 ... [详细]
  • 如何正确配置与使用日志组件:Log4j、SLF4J及Logback的连接与整合方法
    在当前的软件开发实践中,无论是开源项目还是日常工作中,日志框架都是不可或缺的工具之一。本文详细探讨了如何正确配置与使用Log4j、SLF4J及Logback这三个流行的日志组件,并深入解析了它们之间的连接与整合方法,旨在帮助开发者高效地管理和优化日志记录流程。 ... [详细]
  • 开发心得:利用 Redis 构建分布式系统的轻量级协调机制
    开发心得:利用 Redis 构建分布式系统的轻量级协调机制 ... [详细]
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • 探究Oracle数据库字符集编码的详细方法与实践
    本文深入探讨了Oracle数据库字符集编码的详细方法与实践。首先,通过执行 `SELECT USERENV('language') FROM DUAL;` 查询服务端字符集编码。其次,通过在注册表中搜索 `NLS_LANG` 参数来查看客户端字符集编码。此外,文章还介绍了如何在不同场景下正确配置和转换字符集,以确保数据的一致性和完整性。 ... [详细]
  • MySQL性能优化与调参指南【数据库管理】
    本文详细探讨了MySQL数据库的性能优化与参数调整技巧,旨在帮助数据库管理员和开发人员提升系统的运行效率。内容涵盖索引优化、查询优化、配置参数调整等方面,结合实际案例进行深入分析,提供实用的操作建议。此外,还介绍了常见的性能监控工具和方法,助力读者全面掌握MySQL性能优化的核心技能。 ... [详细]
  • 优化后的标题:PHP分布式高并发秒杀系统设计与实现
    PHPSeckill是一个基于PHP、Lua和Redis构建的高效分布式秒杀系统。该项目利用php_apcu扩展优化性能,实现了高并发环境下的秒杀功能。系统设计充分考虑了分布式架构的可扩展性和稳定性,适用于大规模用户同时访问的场景。项目代码已开源,可在Gitee平台上获取。 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • SQLmap自动化注入工具命令详解(第28-29天 实战演练)
    SQL注入工具如SQLMap等在网络安全测试中广泛应用。SQLMap是一款开源的自动化SQL注入工具,支持12种不同的数据库,具体支持的数据库类型可在其插件目录中查看。作为当前最强大的注入工具之一,SQLMap在实际应用中具有极高的效率和准确性。 ... [详细]
  • 在2020年8月19日的深度分析中,我们探讨了HTML标签中同时存在`a`标签的`href`和`onclick`属性时的触发顺序问题。此外,还讨论了如何在一个自适应高度的父级`div`中,使两个子`div`中的一个固定高度为300px,另一个自动填充剩余空间的方法。最后,文章详细介绍了JavaScript异步加载的多种实现方式,包括但不限于`async`、`defer`属性以及动态脚本插入技术,为开发者提供了丰富的技术参考。 ... [详细]
  • 深入解析队列机制及其广泛的应用场景
    本文深入探讨了队列机制的核心原理及其在多种应用场景中的广泛应用。首先,文章详细解析了队列的基本概念、操作方法及其时间复杂度。接着,通过具体实例,阐述了队列在操作系统任务调度、网络通信、事件处理等领域的实际应用。此外,文章还对比了队列与其他常见数据结构(如栈、数组和链表)的优缺点,帮助读者更好地理解和选择合适的数据结构。最后,通过具体的编程示例,进一步巩固了对队列机制的理解和应用。 ... [详细]
  • 如何提升Python处理约1GB数据集时的运行效率?
    如何提升Python处理约1GB数据集时的运行效率?本文探讨了在后端开发中使用Python处理大规模数据集的优化方法。通过分析常见的性能瓶颈,介绍了多种提高数据处理速度的技术,包括使用高效的数据结构、并行计算、内存管理和代码优化策略。此外,文章还提供了在Ubuntu环境下配置和测试这些优化方案的具体步骤,适用于从事推荐系统等领域的开发者。 ... [详细]
author-avatar
wumu
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有