热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用Python中的Plotly绘制三维网格图

使用Python中的Plotly绘制三维网格图原文:ht

使用 Python 中的 Plotly 绘制三维网格图

原文:https://www . geesforgeks . org/3d-mesh-plots-use-plotly-in-python/

Plotly 是一个 Python 库,用于设计图形,尤其是交互式图形。它可以绘制各种图形和图表,如直方图、条形图、箱线图、展开图等。它主要用于数据分析以及财务分析。plotly 是一个交互式可视化库

三维网格图

网格图是一种具有三维曲面、实心边且没有面颜色的图。网格图是一种创建三维三角形集的方法,三角形的顶点由 x、y 和 z 给出。如果只有坐标,则使用德劳奈三角剖分等算法来形成三角形。I、J 和 K 参数也可以用来创建三角形。

语法:【plotly.graph _ objects 类。网格 3d(参数=无,悬停信息=无,x =无,y =无,z =无,kwargs)**

参数:

arg: 与此构造函数或 plotly.graph_objects 实例兼容的属性集合。网格 3d

悬停信息:确定悬停时出现哪些跟踪信息。如果设置了无或跳过,悬停时不会显示任何信息。但是,如果没有设置,点击和悬停事件仍然会触发。

x: 设置顶点的 X 坐标。向量 X、Y 和 Z 的第 n 个元素共同表示第 n 个顶点的 X、Y 和 Z 坐标。

y: 设置顶点的 Y 坐标。向量 X、Y 和 Z 的第 n 个元素共同表示第 n 个顶点的 X、Y 和 Z 坐标。

z: 设置顶点的 Z 坐标。向量 X、Y 和 Z 的第 n 个元素共同表示第 n 个顶点的 X、Y 和 Z 坐标。

例 1:

Python 3


import plotly.graph_objects as go
import numpy as np
# Data for three-dimensional scattered points
z = 15 * np.random.random(100)
x = np.sin(z) + 0.1 * np.random.randn(100)
y = np.cos(z) + 0.1 * np.random.randn(100)
fig = go.Figure(data=[go.Mesh3d(
  x=x, y=y, z=z, color='green', opacity=0.20)])
fig.show()


推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • 本文介绍如何使用Python进行文本处理,包括分词和生成词云图。通过整合多个文本文件、去除停用词并生成词云图,展示文本数据的可视化分析方法。 ... [详细]
  • 深入解析JMeter中的JSON提取器及其应用
    本文详细介绍了如何在JMeter中使用JSON提取器来获取和处理API响应中的数据。特别是在需要将一个接口返回的数据作为下一个接口的输入时,JSON提取器是一个非常有用的工具。 ... [详细]
  • 信用评分卡的Python实现与评估
    本文介绍如何使用Python构建和评估信用评分卡模型,涵盖数据预处理、模型训练及验证指标选择。附带详细代码示例和视频教程链接。 ... [详细]
  • 解决C++编译错误C3867的方法
    本文详细介绍了在不同版本的Visual Studio中,如何正确处理成员函数指针以避免编译错误C3867。同时,提供了一个具体的代码示例及其优化方案。 ... [详细]
  • 深入剖析 DEX 赛道:从 60 大头部项目看五大趋势
    本文通过分析 60 大头部去中心化交易平台(DEX),揭示了当前 DEX 赛道的五大发展趋势,包括市场集中度、跨链协议、AMM+NFT 结合、新公链崛起以及稳定币和衍生品交易的增长潜力。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 图数据库中的知识表示与推理机制
    本文探讨了图数据库及其技术生态系统在知识表示和推理问题上的应用。通过理解图数据结构,尤其是属性图的特性,可以为复杂的数据关系提供高效且优雅的解决方案。我们将详细介绍属性图的基本概念、对象建模、概念建模以及自动推理的过程,并结合实际代码示例进行说明。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 本文介绍了如何使用 Python 的 Bokeh 库在图表上绘制菱形标记。Bokeh 是一个强大的交互式数据可视化工具,支持丰富的图形自定义选项。 ... [详细]
  • GIMP 2.99.2 发布:UI 采用 GTK3 实现、原生支持高分屏和 Wayland
    开源项目评选最后一周,手里的5票再不用就没用了https:www.oschina.netprojecttop_cn_2020GIMP2.99.2已发布,同时这也标志着GIMP3.0的到来,其中最显著的变化是从GTK2过渡到GTK3工具包。基于 ... [详细]
  • 使用Pandas高效读取SQL脚本中的数据
    本文详细介绍了如何利用Pandas直接读取和解析SQL脚本,提供了一种高效的数据处理方法。该方法适用于各种数据库导出的SQL脚本,并且能够显著提升数据导入的速度和效率。 ... [详细]
author-avatar
星星之火
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有