热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用Python来计算均值、中位数、标准差

计算一串数组的均值、中位数、标准差#!usrbinenvpython#-*-coding:utf-8-*-@author:FIGTHING@file:DataMining.py@f

计算一串数组的均值、中位数、标准差

#!/usr/bin/env python
#-*- coding:utf-8 -*-
'''
@author : FIGTHING
@file : DataMining.py
@function:
@software: Pycharm
@time : 2019/06/13/15:40
'''
import numpy as np
age = [23,23,27,27,39,41,47,49,50,52,54,54,56,57,58,58,61]
fat = [9.5,26.5,7.8,17.8,31.4,25.9,27.4,27.2,31.2,34.6,42.5,28.8,33.4,30.2,34.1,23.9,35.7]
#求均值
age_mean = np.mean(age)
print("age平均值为:%f" % age_mean)
fat_mean = np.mean(fat)
print("fat平均值为:%f" % fat_mean)
#求中位数
age.sort()
mid = int(len(age) / 2)
if len(age) % 2 == 0:
median = (age[mid-1] + age[mid]) / 2.0
else:
median = age[mid]
print("age中位数为:%f" % median)
fat.sort()
mid = int(len(fat) / 2)
if len(fat) % 2 == 0:
median = (fat[mid-1] + fat[mid]) / 2.0
else:
median = fat[mid]
print("fat中位数为:%f" % median)
#求标准差
age_std = np.std(age,ddof=1)
print("age标准差为:%f" % age_std)
fat_std = np.std(fat,ddof=1)
print("fat标准差为:%f" % fat_std)

"We often turn out to be our own worst enemy."--《 Wonder Wheel》


推荐阅读
  • Python进阶笔记:深入理解装饰器、生成器与迭代器的应用
    本文深入探讨了Python中的装饰器、生成器和迭代器的应用。装饰器本质上是一个函数,用于在不修改原函数代码和调用方式的前提下为其添加额外功能。实现装饰器需要掌握闭包、高阶函数等基础知识。生成器通过 `yield` 语句提供了一种高效生成和处理大量数据的方法,而迭代器则是一种可以逐个访问集合中元素的对象。文章详细解析了这些概念的原理和实际应用案例,帮助读者更好地理解和使用这些高级特性。 ... [详细]
  • 本课程深入探讨了 Python 中自定义序列类的实现方法,涵盖从基础概念到高级技巧的全面解析。通过实例演示,学员将掌握如何创建支持切片操作的自定义序列对象,并了解 `bisect` 模块在序列处理中的应用。适合希望提升 Python 编程技能的中高级开发者。 ... [详细]
  • 深入解析 Python 中的 NumPy 加法函数 numpy.add() ... [详细]
  • 本文全面解析了 gRPC 的基础知识与高级应用,从 helloworld.proto 文件入手,详细阐述了如何定义服务接口。例如,`Greeter` 服务中的 `SayHello` 方法,该方法在客户端和服务器端的消息交互中起到了关键作用。通过实例代码,读者可以深入了解 gRPC 的工作原理及其在实际项目中的应用。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • 针对图像分类任务的训练方案进行了优化设计。通过引入PyTorch等深度学习框架,利用其丰富的工具包和模块,如 `torch.nn` 和 `torch.nn.functional`,提升了模型的训练效率和分类准确性。优化方案包括数据预处理、模型架构选择和损失函数的设计等方面,旨在提高图像分类任务的整体性能。 ... [详细]
  • 如何使用mysql_nd:Python连接MySQL数据库的优雅指南
    无论是进行机器学习、Web开发还是爬虫项目,数据库操作都是必不可少的一环。本文将详细介绍如何使用Python通过 `mysql_nd` 库与 MySQL 数据库进行高效连接和数据交互。内容涵盖以下几个方面: ... [详细]
  • HTML 页面中调用 JavaScript 函数生成随机数值并自动展示
    在HTML页面中,通过调用JavaScript函数生成随机数值,并将其自动展示在页面上。具体实现包括构建HTML页面结构,定义JavaScript函数以生成随机数,以及在页面加载时自动调用该函数并将结果呈现给用户。 ... [详细]
  • 本文对常见的字符串哈希函数进行了全面分析,涵盖了BKDRHash、APHash、DJBHash、JSHash、RSHash、SDBMHash、PJWHash和ELFHash等多种算法。这些哈希函数在不同的应用场景中表现出各异的性能特点,通过对比其算法原理、计算效率和碰撞概率,为实际应用提供了有价值的参考。 ... [详细]
  • Python 中 json.dumps() 和 json.loads() 的使用方法详解——Python 面试与 JavaScript 面试必备知识
    在 Python 中,`json.dumps()` 和 `json.loads()` 是处理 JSON 数据的核心函数。`json.dumps()` 用于将字典或其他可序列化对象转换为 JSON 格式的字符串,而 `json.loads()` 则用于将 JSON 字符串解析为 Python 对象。本文详细介绍了这两个函数的使用方法及其在 Python 和 JavaScript 面试中的重要性,帮助读者掌握这些关键技能。 ... [详细]
  • 利用树莓派畅享落网电台音乐体验
    最近重新拾起了闲置已久的树莓派,这台小巧的开发板已经沉寂了半年多。上个月闲暇时间较多,我决定将其重新启用。恰逢落网电台进行了改版,回忆起之前在树莓派论坛上看到有人用它来播放豆瓣音乐,便萌生了同样的想法。通过一番调试,终于实现了在树莓派上流畅播放落网电台音乐的功能,带来了全新的音乐享受体验。 ... [详细]
  • 本文深入解析了Python在处理HTML过滤时的实现方法及其应用场景。通过具体实例,详细介绍了如何利用Python代码去除HTML字符串中的标签和其他无关信息,确保内容的纯净与安全。此外,文章还探讨了该技术在网页抓取、数据清洗等领域的实际应用,为开发者提供了宝贵的参考。 ... [详细]
  • 掌握Android UI设计:利用ZoomControls实现图片缩放功能
    本文介绍了如何在Android应用中通过使用ZoomControls组件来实现图片的缩放功能。ZoomControls提供了一种简单且直观的方式,让用户可以通过点击放大和缩小按钮来调整图片的显示大小。文章详细讲解了ZoomControls的基本用法、布局设置以及与ImageView的结合使用方法,适合初学者快速掌握Android UI设计中的这一重要功能。 ... [详细]
  • 技术分享:深入解析GestureDetector手势识别机制
    技术分享:深入解析GestureDetector手势识别机制 ... [详细]
author-avatar
平凡小迪
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有