热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用GridSearchCV和KerasClassifier进行超参数调整

使用GridSearchCV和KerasClassifier进行超参数调整

使用 GridSearchCV 和 KerasClassifier 进行超参数调整

原文:https://www . geeksforgeeks . org/hyperparameter-tuning-using-gridsearchcv-and-kerasclassifier/

超参数调整是通过调整神经网络的参数来提高模型的效率。一些 sci kit-learn API,如 GridSearchCV 和 RandomizedSearchCV,用于执行超参数调整。

在本文中,您将学习如何使用 GridSearchCV 来调整 Keras 神经网络超参数。

方法:



  1. 我们将包装在 scikit 中使用的 Keras 模型——学习使用 KerasClassifier,它是一个包装器。

  2. 我们将使用使用 KerasClassifier 和 GridSearchCV 的交叉验证

  3. 调整超参数,如时期数、神经元数和批次大小。


为 Keras 实现 scikit-learn 分类器应用编程接口;


tf.keras.wrappers.scikit_learn。KerasClassifier(

build _ fn =无,**sk_params

)

Code:

# import the libraries 
import tensorflow as tf
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler

数据集可以从这里的
下载导入数据集,使用该数据集我们可以预测客户是留下还是离开。

代码:

# The last column is a binary value
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:-1].values
y = dataset.iloc[:, -1].values

编码:数据预处理

le = LabelEncoder()
X[:, 2] = le.fit_transform(X[:, 2])
#perform one hot encoding 
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough')
X = np.array(ct.fit_transform(X))
# perform standardization of the data. 
sc = StandardScaler()
X = sc.fit_transform(X)

要使用 KerasClassifier 包装器,我们需要在一个函数中构建我们的模型,该函数需要传递给 KerasClassifier 构造函数中的 build_fn 参数。

代码:

def build_clf(unit):
  # creating the layers of the NN
  ann = tf.keras.models.Sequential()
  ann.add(tf.keras.layers.Dense(units=unit, activation='relu'))
  ann.add(tf.keras.layers.Dense(units=unit, activation='relu'))
  ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
  ann.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
  return ann

代码:创建 KerasClassifier 类的对象

model=KerasClassifier(build_fn=build_clf)

现在我们将创建我们想要调优的参数的字典,并在 GridSearchCV 中作为参数传递。

代码:

params={'batch_size':[100, 20, 50, 25, 32], 
        'nb_epoch':[200, 100, 300, 400],
        'unit':[5,6, 10, 11, 12, 15],
        }
gs=GridSearchCV(estimator=model, param_grid=params, cv=10)
# now fit the dataset to the GridSearchCV object. 
gs = gs.fit(X, y)

best_score_ 成员给出了优化过程中观察到的最佳得分, best_params_ 描述了获得最佳结果的参数组合。

代码:

best_params=gs.best_params_
accuracy=gs.best_score_

输出:



精度:0.80325


最佳参数:{'batch_size': 20,' nb_epoch': 200,' unit': 15}



推荐阅读
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
author-avatar
Eva绫波_772
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有