热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用带有列名称和值的字典对熊猫数据框进行一键编码

我目前有以下代码,使用字典对熊猫数据框进行一次编码,其中的键是要素名

我目前有以下代码,使用字典对熊猫数据框进行一次编码,其中的键是要素名称,值是要素值列表。

def dummy_encode_dataframe(self,df,dummy_values_dict):
for (feature,dummy_values) in sorted(dummy_values_dict.items()):
for dummy_value in sorted(dummy_values):
dummy_name = u'%s_%s' % (feature,dummy_value)
df[dummy_name] = (df[feature] == dummy_value).astype(float)
del df[feature]
return df

dummy_values_dict具有以下结构:

feature name (key) list of possible values (strings)
--------- ---------------------------------
F1 ['A','B','C','MISSING']
F2 ['D','E','F','MISSING']
F3 ['G','H','I']

带有示例输入/输出:

df (one row):
====
F1 F2 F3
--- ----- -----
'A' 'Q' 'H'

预期输出:

df_output:
====
F1_A F1_B F1_C F1_MISSING F2_D F2_E F2_F F2_MISSING F3_G F3_H F3_I
--- ---- ----- --------- ---- ---- ---- ---------- ---- ---- -----
1 0 0 0 0 0 0 0 0 1 0

问题在于for循环需要太长时间才能运行。有什么优化方法吗?

更新1:来自有关在scikit-learn中使用OneHotEncoder的评论...
您能否详细说明这段代码以获得所需的输出?

import pandas as pd
df = pd.DataFrame(columns=['F1','F2','F3'])
df.loc[0] = ['A','Q','H']
dummy_values_dict = { 'F1': ['A','MISSING'],'F2': ['D','F3': ['G','I'] }
# import OneHotEncoder
from sklearn.preprocessing import OneHotEncoder
categorical_cols = sorted(dummy_values_dict.keys())
# instantiate OneHotEncoder
# todo: encoding...


也许这个问题措辞不好。我设法使用下面的代码找到了一个更优化的实现(可能有更好的实现):

import pandas as pd
import numpy as np
def dummy_encode_dataframe_optimized(df,dummy_values_dict):
column_headers = np.concatenate(np.array(
[np.array([k + '_value_' + s
for s in sorted(dummy_values_dict[k])])
for k in sorted(dummy_values_dict.keys())]),axis=0)
feature_values = [str(feature) + '_value_' + str(df[feature][0])
for feature in dummy_values_dict.keys()]
one_hot_encode_vector = np.vectorize(lambda x: float(1) if x in feature_values else float(0))(column_headers)
untouched_df = df.drop(df.ix[:,dummy_values_dict.keys()].head(0).columns,axis=1)
hot_encoded_df = pd.concat(
[
untouched_df,pd.DataFrame(
[one_hot_encode_vector],index=untouched_df.index,columns=column_headers
)
],axis=1
)
return hot_encoded_df
df = pd.DataFrame(columns=['F1','F2','F3'])
df.loc[0] = ['A','Q','H']
dummy_values_dict = { 'F1': ['A','B','C','MISSING'],'F2': ['D','E','F','F3': ['G','H','I'] }
result = dummy_encode_dataframe_optimized(df,dummy_values_dict)

,

pd.get_dummies应该适合您的情况,但是首先我们需要将不在字典中的所有值都设置为NaN

df = pd.DataFrame({'F1': ['A','F2': [
'Q','I',5]})
# F1 F2 F3
# 0 A Q G
# 1 B E H
# 2 C F I
# 3 MISSING MISSING 5
dummy_values_dict = {'F1': ['A','F2': [
'D','I']}

我们可以将所有其他值设置为np.nan

for col in df.columns:
df.loc[~df[col].isin(dummy_values_dict[col]),col] = np.nan
print(df)
# F1 F2 F3
# 0 A NaN G
# 1 B E H
# 2 C F I
# 3 MISSING MISSING NaN

然后我们可以使用pd.get_dummies来完成这项工作:

print(pd.get_dummies(df))
# F1_A F1_B F1_C F1_MISSING F2_E F2_F F2_MISSING F3_G F3_H F3_I
# 0 1 0 0 0 0 0 0 1 0 0
# 1 0 1 0 0 1 0 0 0 1 0
# 2 0 0 1 0 0 1 0 0 0 1
# 3 0 0 0 1 0 0 1 0 0 0

请注意,如果我们没有一个值(例如“ F2”列中的“ D”),则不会出现“ F2_D”列,但是如果您确实需要该列,可以很容易地解决该问题


推荐阅读
  • 本文探讨了在Java应用中,由于对象间循环引用导致重写toString方法时出现StackOverflowError的具体情况,并提供了有效的解决方案。 ... [详细]
  • 今天我在操作Git时遇到了一个问题,即我的仓库进入了分离的HEAD状态,这与之前讨论过的‘即使本地有更改,git push仍显示所有内容最新’的问题类似。 ... [详细]
  • 导读上一篇讲了zsh的常用字符串操作,这篇开始讲更为琐碎的转义字符和格式化输出相关内容。包括转义字符、引号、print、printf的使用等等。其中很多内容没有必要记忆,作为手册参 ... [详细]
  • 本文档详细介绍了Robot Framework的基础知识、安装配置方法及其实用技巧。从环境搭建到编写第一个测试用例,涵盖了一系列实用的操作指南和最佳实践。 ... [详细]
  • 使用DataGridViewComboBoxColumn实现数据绑定与操作
    本文详细介绍如何在DataGridView中使用DataGridViewComboBoxColumn来加载、选择和保存数据库中的数据,提供具体的实现步骤和示例代码。 ... [详细]
  • 本文探讨了在Java应用中实现线程池优雅关闭的两种方法,包括使用ShutdownHook注册钩子函数以及通过SignalHandler处理信号量。每种方法都提供了具体的代码示例,并讨论了可能遇到的问题及解决方案。 ... [详细]
  • 探索Arjun v1.3:高效挖掘HTTP参数的利器
    本文将详细介绍一款名为Arjun的开源安全工具,该工具能够帮助安全研究人员有效提取和分析HTTP参数。请注意,Arjun v1.3要求运行环境为Python 3.4及以上版本。 ... [详细]
  • 手把手教你构建简易JSON解析器
    本文将带你深入了解JSON解析器的构建过程,通过实践掌握JSON解析的基本原理。适合所有对数据解析感兴趣的开发者。 ... [详细]
  • 本文深入探讨了Java注解的基本概念及其在现代Java开发中的应用。文章不仅介绍了如何创建和使用自定义注解,还详细讲解了如何利用反射机制解析注解,以及Java内建注解的使用场景。 ... [详细]
  • 使用 NDB 提升 Node.js 应用调试体验
    本文介绍了由 Google Chrome 实验室推出的新一代 Node.js 调试工具 NDB,旨在为开发者提供更加高效和便捷的调试解决方案。 ... [详细]
  • Android json字符串转Map
    Androidjson字符串转Map,Go语言社区,Golang程序员人脉社 ... [详细]
  • 一个产品数组拼图|集合 2 (O(1)空间) ... [详细]
  • 本文介绍了如何有效解决在Java编程中遇到的 'element cannot be mapped to a null key' 错误,通过具体的代码示例展示了问题的根源及解决方案。 ... [详细]
  • 本文档详细介绍了服务器与应用系统迁移的策略与实施步骤。迁移不仅涉及数据的转移,还包括环境配置、应用兼容性测试等多个方面,旨在确保迁移过程的顺利进行及迁移后的系统稳定运行。 ... [详细]
  • jme-燃烧的火焰
    jme的粒子效果也让人炫目:publicclassHelloParticleextendsSimpleApplication{publicstaticvoid ... [详细]
author-avatar
我们的北京宫
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有