热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[Java并发包学习八]深度剖析ConcurrentHashMap

概述还记得大学快毕业的时候要准备找工作了,然后就看各种面试相关的书籍,还记得很多面试书中都说到:HashMap是非线程安全的,HashTable是线程安全的。那个时候没怎么写Java代码,所以根本就没

概述

还记得大学快毕业的时候要准备找工作了,然后就看各种面试相关的书籍,还记得很多面试书中都说到:

HashMap是非线程安全的,HashTable是线程安全的。

那个时候没怎么写Java代码,所以根本就没有听说过ConcurrentHashMap,只知道面试的时候就记住这句话就行了…至于为什么是线程安全的,内部怎么实现的,通通不了解。

今天我们将深入剖析一个比HashTable性能更优的线程安全的Map类,它就是ConcurrentHashMap,本文基于Java 7的源码做剖析

ConcurrentHashMap的目的

多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。虽然已经有一个线程安全的HashTable,但是HashTable容器使用synchronized(他的get和put方法的实现代码如下)来保证线程安全,在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,访问其他同步方法的线程就可能会进入阻塞或者轮训状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return (V)e.value;
}
}
return null;
}
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
}

// Makes sure the key is not already in the hashtable.
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry entry = (Entry)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}

addEntry(hash, key, value, index);
return null;
}

在这么恶劣的环境下,ConcurrentHashMap应运而生。

实现原理

ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。如下图是ConcurrentHashMap的内部结构图:

从图中可以看到,ConcurrentHashMap内部分为很多个Segment,每一个Segment拥有一把锁,然后每个Segment(继承ReentrantLock)下面包含很多个HashEntry列表数组。对于一个key,需要经过三次(为什么要hash三次下文会详细讲解)hash操作,才能最终定位这个元素的位置,这三次hash分别为:

  1. 对于一个key,先进行一次hash操作,得到hash值h1,也即h1 = hash1(key);
  2. 将得到的h1的高几位进行第二次hash,得到hash值h2,也即h2 = hash2(h1高几位),通过h2能够确定该元素的放在哪个Segment;
  3. 将得到的h1进行第三次hash,得到hash值h3,也即h3 = hash3(h1),通过h3能够确定该元素放置在哪个HashEntry。

初始化

先看看ConcurrentHashMap的初始化做了哪些事情,构造函数的源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel)
{

if (!(loadFactor > 0) || initialCapacity <0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
cOncurrencyLevel= MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize
++sshift;
ssize <<= 1;
}
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap
cap <<= 1;
// create segments and segments[0]
Segment s0 =
new Segment(loadFactor, (int)(cap * loadFactor),
(HashEntry[])new HashEntry[cap]);
Segment[] ss = (Segment[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}

传入的参数有initialCapacity,loadFactor,concurrencyLevel这三个。

  • initialCapacity表示新创建的这个ConcurrentHashMap的初始容量,也就是上面的结构图中的Entry数量。默认值为static final int DEFAULT_INITIAL_CAPACITY
    = 16;
  • loadFactor表示负载因子,就是当ConcurrentHashMap中的元素个数大于loadFactor * 最大容量时就需要rehash,扩容。默认值为static final float DEFAULT_LOAD_FACTOR = 0.75f;
  • concurrencyLevel表示并发级别,这个值用来确定Segment的个数,Segment的个数是大于等于concurrencyLevel的第一个2的n次方的数。比如,如果concurrencyLevel为12,13,14,15,16这些数,则Segment的数目为16(2的4次方)。默认值为static final int DEFAULT_CONCURRENCY_LEVEL = 16;。理想情况下ConcurrentHashMap的真正的并发访问量能够达到concurrencyLevel,因为有concurrencyLevel个Segment,假如有concurrencyLevel个线程需要访问Map,并且需要访问的数据都恰好分别落在不同的Segment中,则这些线程能够无竞争地自由访问(因为他们不需要竞争同一把锁),达到同时访问的效果。这也是为什么这个参数起名为“并发级别”的原因。

初始化的一些动作:

  1. 验证参数的合法性,如果不合法,直接抛出异常。
  2. concurrencyLevel也就是Segment的个数不能超过规定的最大Segment的个数,默认值为static final int MAX_SEGMENTS = 1 <<16;,如果超过这个值,设置为这个值。
  3. 然后使用循环找到大于等于concurrencyLevel的第一个2的n次方的数ssize,这个数就是Segment数组的大小,并记录一共向左按位移动的次数sshift,并令segmentShift = 32 - sshift,并且segmentMask的值等于ssize - 1,segmentMask的各个二进制位都为1,目的是之后可以通过key的hash值与这个值做&运算确定Segment的索引。
  4. 检查给的容量值是否大于允许的最大容量值,如果大于该值,设置为该值。最大容量值为static final int MAXIMUM_CAPACITY = 1 <<30;
  5. 然后计算每个Segment平均应该放置多少个元素,这个值c是向上取整的值。比如初始容量为15,Segment个数为4,则每个Segment平均需要放置4个元素。
  6. 最后创建一个Segment实例,将其当做Segment数组的第一个元素。

put操作

put操作的源码如下:

1
2
3
4
5
6
7
8
9
10
11
public V put(K key, V value) {
Segment s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment)UNSAFE.getObject // nonvolatile; recheck
(segments, (j <null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}

操作步骤如下:

  1. 判断value是否为null,如果为null,直接抛出异常。
  2. key通过一次hash运算得到一个hash值。(这个hash运算下文详说)
  3. 将得到hash值向右按位移动segmentShift位,然后再与segmentMask做&运算得到segment的索引j。
    在初始化的时候我们说过segmentShift的值等于32-sshift,例如concurrencyLevel等于16,则sshift等于4,则segmentShift为28。hash值是一个32位的整数,将其向右移动28位就变成这个样子:
    0000 0000 0000 0000 0000 0000 0000 xxxx,然后再用这个值与segmentMask做&运算,也就是取最后四位的值。这个值确定Segment的索引。
  4. 使用Unsafe的方式从Segment数组中获取该索引对应的Segment对象。
  5. 向这个Segment对象中put值,这个put操作也基本是一样的步骤(通过&运算获取HashEntry的索引,然后set)。

get操作

get操作的源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public V get(Object key) {
Segment s; // manually integrate access methods to reduce overhead
HashEntry[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) < + SBASE;
if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {

for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) < + TBASE);
e != null; e = e.next) {

K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}

操作步骤为:

  1. 和put操作一样,先通过key进行两次hash确定应该去哪个Segment中取数据。
  2. 使用Unsafe获取对应的Segment,然后再进行一次&运算得到HashEntry链表的位置,然后从链表头开始遍历整个链表(因为Hash可能会有碰撞,所以用一个链表保存),如果找到对应的key,则返回对应的value值,如果链表遍历完都没有找到对应的key,则说明Map中不包含该key,返回null。

size操作

size操作与put和get操作最大的区别在于,size操作需要遍历所有的Segment才能算出整个Map的大小,而put和get都只关心一个Segment。假设我们当前遍历的Segment为SA,那么在遍历SA过程中其他的Segment比如SB可能会被修改,于是这一次运算出来的size值可能并不是Map当前的真正大小。所以一个比较简单的办法就是计算Map大小的时候所有的Segment都Lock住,不能更新(包含put,remove等等)数据,计算完之后再Unlock。这是普通人能够想到的方案,但是牛逼的作者还有一个更好的Idea:先给3次机会,不lock所有的Segment,遍历所有Segment,累加各个Segment的大小得到整个Map的大小,如果某相邻的两次计算获取的所有Segment的更新的次数(每个Segment都有一个modCount变量,这个变量在Segment中的Entry被修改时会加一,通过这个值可以得到每个Segment的更新操作的次数)是一样的,说明计算过程中没有更新操作,则直接返回这个值。如果这三次不加锁的计算过程中Map的更新次数有变化,则之后的计算先对所有的Segment加锁,再遍历所有Segment计算Map大小,最后再解锁所有Segment。源代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j
Segment seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c <0 || (size += c) <0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}

举个例子:

一个Map有4个Segment,标记为S1,S2,S3,S4,现在我们要获取Map的size。计算过程是这样的:第一次计算,不对S1,S2,S3,S4加锁,遍历所有的Segment,假设每个Segment的大小分别为1,2,3,4,更新操作次数分别为:2,2,3,1,则这次计算可以得到Map的总大小为1+2+3+4=10,总共更新操作次数为2+2+3+1=8;第二次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设这次每个Segment的大小变成了2,2,3,4,更新次数分别为3,2,3,1,因为两次计算得到的Map更新次数不一致(第一次是8,第二次是9)则可以断定这段时间Map数据被更新,则此时应该再试一次;第三次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设每个Segment的更新操作次数还是为3,2,3,1,则因为第二次计算和第三次计算得到的Map的更新操作的次数是一致的,就能说明第二次计算和第三次计算这段时间内Map数据没有被更新,此时可以直接返回第三次计算得到的Map的大小。最坏的情况:第三次计算得到的数据更新次数和第二次也不一样,则只能先对所有Segment加锁再计算最后解锁。

containsValue操作

containsValue操作采用了和size操作一样的想法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public boolean containsValue(Object value) {
// Same idea as size()
if (value == null)
throw new NullPointerException();
final Segment[] segments = this.segments;
boolean found = false;
long last = 0;
int retries = -1;
try {
outer: for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j
ensureSegment(j).lock(); // force creation
}
long hashSum = 0L;
int sum = 0;
for (int j = 0; j
HashEntry[] tab;
Segment seg = segmentAt(segments, j);
if (seg != null && (tab = seg.table) != null) {
for (int i = 0 ; i
HashEntry e;
for (e = entryAt(tab, i); e != null; e = e.next) {
V v = e.value;
if (v != null && value.equals(v)) {
found = true;
break outer;
}
}
}
sum += seg.modCount;
}
}
if (retries > 0 && sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j
segmentAt(segments, j).unlock();
}
}
return found;
}

关于hash

大家一定还记得使用一个key定位Segment之前进行过一次hash操作吧?这次hash的作用是什么呢?看看hash的源代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
private int hash(Object k) {
int h = hashSeed;

if ((0 != h) && (k instanceof String)) {
return sun.misc.Hashing.stringHash32((String) k);
}

h ^= k.hashCode();

// Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
h += (h <<15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h <<3);
h ^= (h >>> 6);
h += (h <<2) + (h <<14);
return h ^ (h >>> 16);
}

源码中的注释是这样的:

Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. This is critical because ConcurrentHashMap uses power-of-two length hash tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper bits.

这里用到了Wang/Jenkins hash算法的变种,主要的目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。

举个简单的例子:

1
2
3
4
System.out.println(Integer.parseInt("0001111", 2) & 15);
System.out.println(Integer.parseInt("0011111", 2) & 15);
System.out.println(Integer.parseInt("0111111", 2) & 15);
System.out.println(Integer.parseInt("1111111", 2) & 15);

这些数字得到的hash值都是一样的,全是15,所以如果不进行第一次预hash,发生冲突的几率还是很大的,但是如果我们先把上例中的二进制数字使用hash()函数先进行一次预hash,得到的结果是这样的:

0100|0111|0110|0111|1101|1010|0100|1110
1111|0111|0100|0011|0000|0001|1011|1000
0111|0111|0110|1001|0100|0110|0011|1110
1000|0011|0000|0000|1100|1000|0001|1010

上面这个例子引用自: InfoQ
可以看到每一位的数据都散开了,并且ConcurrentHashMap中是使用预hash值的高位参与运算的。比如之前说的先将hash值向右按位移动28位,再与15做&运算,得到的结果都别为:4,15,7,8,没有冲突!

注意事项
  • ConcurrentHashMap中的key和value值都不能为null。
  • ConcurrentHashMap的整个操作过程中大量使用了Unsafe类来获取Segment/HashEntry,这里Unsafe的主要作用是提供原子操作。Unsafe这个类比较恐怖,破坏力极强,一般场景不建议使用,如果有兴趣可以到这里做详细的了解Java中鲜为人知的特性
  • ConcurrentHashMap是线程安全的类并不能保证使用了ConcurrentHashMap的操作都是线程安全的!
  • 本文为作者个人理解,如果有误,请留言相告,感激不尽。
  • 转载请注明出处:http://qifuguang.me/2015/09/10/[Java并发包学习八]深度剖析ConcurrentHashMap/

推荐阅读
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案
    深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案 ... [详细]
  • 线程能否先以安全方式获取对象,再进行非安全发布? ... [详细]
  • 本文深入探讨了Java多线程环境下的同步机制及其应用,重点介绍了`synchronized`关键字的使用方法和原理。`synchronized`关键字主要用于确保多个线程在访问共享资源时的互斥性和原子性。通过具体示例,如在一个类中使用`synchronized`修饰方法,展示了如何实现线程安全的代码块。此外,文章还讨论了`ReentrantLock`等其他同步工具的优缺点,并提供了实际应用场景中的最佳实践。 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • 分享一款基于Java开发的经典贪吃蛇游戏实现
    本文介绍了一款使用Java语言开发的经典贪吃蛇游戏的实现。游戏主要由两个核心类组成:`GameFrame` 和 `GamePanel`。`GameFrame` 类负责设置游戏窗口的标题、关闭按钮以及是否允许调整窗口大小,并初始化数据模型以支持绘制操作。`GamePanel` 类则负责管理游戏中的蛇和苹果的逻辑与渲染,确保游戏的流畅运行和良好的用户体验。 ... [详细]
  • 开发日志:201521044091 《Java编程基础》第11周学习心得与总结
    开发日志:201521044091 《Java编程基础》第11周学习心得与总结 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • 深入解析 Android 中 EditText 的 getLayoutParams 方法及其代码应用实例 ... [详细]
  • 在深入掌握Spring框架的事务管理之前,了解其背后的数据库事务基础至关重要。Spring的事务管理功能虽然强大且灵活,但其核心依赖于数据库自身的事务处理机制。因此,熟悉数据库事务的基本概念和特性是必不可少的。这包括事务的ACID属性、隔离级别以及常见的事务管理策略等。通过这些基础知识的学习,可以更好地理解和应用Spring中的事务管理配置。 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • 深入浅析JVM垃圾回收机制与收集器概述
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)》的阅读心得进行整理,详细探讨了JVM的垃圾回收机制及其各类收集器的特点与应用场景。通过分析不同垃圾收集器的工作原理和性能表现,帮助读者深入了解JVM内存管理的核心技术,为优化Java应用程序提供实用指导。 ... [详细]
  • 在对WordPress Duplicator插件0.4.4版本的安全评估中,发现其存在跨站脚本(XSS)攻击漏洞。此漏洞可能被利用进行恶意操作,建议用户及时更新至最新版本以确保系统安全。测试方法仅限于安全研究和教学目的,使用时需自行承担风险。漏洞编号:HTB23162。 ... [详细]
  • Python多线程编程技巧与实战应用详解 ... [详细]
  • 在Java基础中,私有静态内部类是一种常见的设计模式,主要用于防止外部类的直接调用或实例化。这种内部类仅服务于其所属的外部类,确保了代码的封装性和安全性。通过分析JDK源码,我们可以发现许多常用类中都包含了私有静态内部类,这些内部类虽然功能强大,但其复杂性往往让人感到困惑。本文将深入探讨私有静态内部类的作用、实现方式及其在实际开发中的应用,帮助读者更好地理解和使用这一重要的编程技巧。 ... [详细]
author-avatar
脏的孩_963
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有