热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

适合python中的数据的多个高斯-fitmultiplegaussianstothedatainpython

Iamjustwonderingifthereisaeasywaytoimplementgaussianlorentzianfitsto10peaksandext

I am just wondering if there is a easy way to implement gaussian/lorentzian fits to 10 peaks and extract fwhm and also to determine the position of fwhm on the x-values. The complicated way is to separate the peaks and fit the data and extract fwhm.

我只是想知道是否有一种简单的方法来实现高斯/洛伦兹拟合到10个峰值并提取fwhm并且还确定fwhm在x值上的位置。复杂的方法是分离峰值并拟合数据并提取fwhm。

Data is [https://drive.google.com/file/d/0B6sUnnbyNGuOT2RZb2UwYXU4dlE/view?usp=sharing].

数据为[https://drive.google.com/file/d/0B6sUnnbyNGuOT2RZb2UwYXU4dlE/view?usp=sharing]。

Any advise greatly appreciated. Thanks.

任何建议非常感谢。谢谢。

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('data.txt', delimiter=',')
x, y = data

plt.plot(x,y)
plt.show()

def func(x, *params):
    y = np.zeros_like(x)
    print len(params)
    for i in range(0, len(params), 3):
        ctr = params[i]
        amp = params[i+1]
        wid = params[i+2]
        y = y + amp * np.exp( -((x - ctr)/wid)**2)



guess = [0, 60000, 80, 1000, 60000, 80]
for i in range(12):
    guess += [60+80*i, 46000, 25]


popt, pcov = curve_fit(func, x, y, p0=guess)
print popt
fit = func(x, *popt)

plt.plot(x, y)
plt.plot(x, fit , 'r-')
plt.show()



Traceback (most recent call last):
File "C:\Users\test.py", line 33, in 
popt, pcov = curve_fit(func, x, y, p0=guess)
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 533, in curve_fit
res = leastsq(func, p0, args=args, full_output=1, **kw)
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 368, in leastsq
shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 19, in _check_func
res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 444, in    _ general_function
return function(xdata, *params) - ydata
TypeError: unsupported operand type(s) for -: 'NoneType' and 'float'

1 个解决方案

#1


13  

This requires a non-linear fit. A good tool for this is scipy's curve_fit function.

这需要非线性拟合。一个很好的工具是scipy的curve_fit函数。

To use curve_fit, we need a model function, call it func, that takes x and our (guessed) parameters as arguments and returns the corresponding values for y. As our model, we use a sum of gaussians:

要使用curve_fit,我们需要一个模型函数,称之为func,它将x和我们的(猜测的)参数作为参数,并返回y的相应值。作为我们的模型,我们使用一个高斯的总和:

from scipy.optimize import curve_fit
import numpy as np

def func(x, *params):
    y = np.zeros_like(x)
    for i in range(0, len(params), 3):
        ctr = params[i]
        amp = params[i+1]
        wid = params[i+2]
        y = y + amp * np.exp( -((x - ctr)/wid)**2)
    return y

Now, let's create an initial guess for our parameters. This guess starts with peaks at x=0 and x=1,000 with amplitude 60,000 and e-folding widths of 80. Then, we add candidate peaks at x=60, 140, 220, ... with amplitude 46,000 and width of 25:

现在,让我们为我们的参数创建一个初始猜测。这个猜测从x = 0和x = 1,000处的峰值开始,幅度为60,000,电子折叠宽度为80.然后,我们在x = 60,140,​​220 ......处添加候选峰值,幅度为46,000,宽度为25:

guess = [0, 60000, 80, 1000, 60000, 80]
for i in range(12):
    guess += [60+80*i, 46000, 25]

Now, we are ready to perform the fit:

现在,我们已准备好执行拟合:

popt, pcov = curve_fit(func, x, y, p0=guess)
fit = func(x, *popt)

To see how well we did, let's plot the actual y values (solid black curve) and the fit (dashed red curve) against x:

为了看看我们做得多好,让我们绘制实际y值(纯黑色曲线)和拟合(虚线红色曲线)对x:

enter image description here

As you can see, the fit is fairly good.

正如你所看到的,合适性非常好。

Complete working code

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('data.txt', delimiter=',')
x, y = data

plt.plot(x,y)
plt.show()

def func(x, *params):
    y = np.zeros_like(x)
    for i in range(0, len(params), 3):
        ctr = params[i]
        amp = params[i+1]
        wid = params[i+2]
        y = y + amp * np.exp( -((x - ctr)/wid)**2)
    return y

guess = [0, 60000, 80, 1000, 60000, 80]
for i in range(12):
    guess += [60+80*i, 46000, 25]   

popt, pcov = curve_fit(func, x, y, p0=guess)
print popt
fit = func(x, *popt)

plt.plot(x, y)
plt.plot(x, fit , 'r-')
plt.show()

推荐阅读
  • #点球小游戏fromrandomimportchoiceimporttimescore[0,0]direction[left,center,right]defkick() ... [详细]
  • 在现代Web应用中,当用户滚动到页面底部时,自动加载更多内容的功能变得越来越普遍。这种无刷新加载技术不仅提升了用户体验,还优化了页面性能。本文将探讨如何实现这一功能,并介绍一些实际应用案例。 ... [详细]
  • 反向投影技术主要用于在大型输入图像中定位特定的小型模板图像。通过直方图对比,它能够识别出最匹配的区域或点,从而确定模板图像在输入图像中的位置。 ... [详细]
  • JavaScript 基础语法指南
    本文详细介绍了 JavaScript 的基础语法,包括变量、数据类型、运算符、语句和函数等内容,旨在为初学者提供全面的入门指导。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文将详细探讨Linux pinctrl子系统的各个关键数据结构,帮助读者深入了解其内部机制。通过分析这些数据结构及其相互关系,我们将进一步理解pinctrl子系统的工作原理和设计思路。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • 本文详细探讨了HTML表单中GET和POST请求的区别,包括它们的工作原理、数据传输方式、安全性及适用场景。同时,通过实例展示了如何在Servlet中处理这两种请求。 ... [详细]
  • 配置多VLAN环境下的透明SQUID代理
    本文介绍如何在包含多个VLAN的网络环境中配置SQUID作为透明网关。网络拓扑包括Cisco 3750交换机、PANABIT防火墙和SQUID服务器,所有设备均部署在ESXi虚拟化平台上。 ... [详细]
  • 本文探讨了如何在iOS开发环境中,特别是在Xcode 6.1中,设置和应用自定义文本样式。我们将详细介绍实现方法,并提供一些实用的技巧。 ... [详细]
  • 本文详细介绍了C语言的起源、发展及其标准化过程,涵盖了从早期的BCPL和B语言到现代C语言的演变,并探讨了其在操作系统和跨平台编程中的重要地位。 ... [详细]
  • Python第三方库安装的多种途径及注意事项
    本文详细介绍了Python第三方库的几种常见安装方法,包括使用pip命令、集成开发环境(如Anaconda)以及手动文件安装,并提供了每种方法的具体操作步骤和适用场景。 ... [详细]
  • 对象自省自省在计算机编程领域里,是指在运行时判断一个对象的类型和能力。dir能够返回一个列表,列举了一个对象所拥有的属性和方法。my_list[ ... [详细]
author-avatar
1012720691_905e1e
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有