作者:1012720691_905e1e | 来源:互联网 | 2024-10-14 12:05
Iamjustwonderingifthereisaeasywaytoimplementgaussianlorentzianfitsto10peaksandext
I am just wondering if there is a easy way to implement gaussian/lorentzian fits to 10 peaks and extract fwhm and also to determine the position of fwhm on the x-values. The complicated way is to separate the peaks and fit the data and extract fwhm.
我只是想知道是否有一种简单的方法来实现高斯/洛伦兹拟合到10个峰值并提取fwhm并且还确定fwhm在x值上的位置。复杂的方法是分离峰值并拟合数据并提取fwhm。
Data is [https://drive.google.com/file/d/0B6sUnnbyNGuOT2RZb2UwYXU4dlE/view?usp=sharing].
数据为[https://drive.google.com/file/d/0B6sUnnbyNGuOT2RZb2UwYXU4dlE/view?usp=sharing]。
Any advise greatly appreciated. Thanks.
任何建议非常感谢。谢谢。
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt('data.txt', delimiter=',')
x, y = data
plt.plot(x,y)
plt.show()
def func(x, *params):
y = np.zeros_like(x)
print len(params)
for i in range(0, len(params), 3):
ctr = params[i]
amp = params[i+1]
wid = params[i+2]
y = y + amp * np.exp( -((x - ctr)/wid)**2)
guess = [0, 60000, 80, 1000, 60000, 80]
for i in range(12):
guess += [60+80*i, 46000, 25]
popt, pcov = curve_fit(func, x, y, p0=guess)
print popt
fit = func(x, *popt)
plt.plot(x, y)
plt.plot(x, fit , 'r-')
plt.show()
Traceback (most recent call last):
File "C:\Users\test.py", line 33, in
popt, pcov = curve_fit(func, x, y, p0=guess)
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 533, in curve_fit
res = leastsq(func, p0, args=args, full_output=1, **kw)
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 368, in leastsq
shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 19, in _check_func
res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
File "C:\Python27\lib\site-packages\scipy\optimize\minpack.py", line 444, in _ general_function
return function(xdata, *params) - ydata
TypeError: unsupported operand type(s) for -: 'NoneType' and 'float'
1 个解决方案
13
This requires a non-linear fit. A good tool for this is scipy's curve_fit
function.
这需要非线性拟合。一个很好的工具是scipy的curve_fit函数。
To use curve_fit
, we need a model function, call it func
, that takes x
and our (guessed) parameters as arguments and returns the corresponding values for y
. As our model, we use a sum of gaussians:
要使用curve_fit,我们需要一个模型函数,称之为func,它将x和我们的(猜测的)参数作为参数,并返回y的相应值。作为我们的模型,我们使用一个高斯的总和:
from scipy.optimize import curve_fit
import numpy as np
def func(x, *params):
y = np.zeros_like(x)
for i in range(0, len(params), 3):
ctr = params[i]
amp = params[i+1]
wid = params[i+2]
y = y + amp * np.exp( -((x - ctr)/wid)**2)
return y
Now, let's create an initial guess for our parameters. This guess starts with peaks at x=0
and x=1,000
with amplitude 60,000 and e-folding widths of 80. Then, we add candidate peaks at x=60, 140, 220, ...
with amplitude 46,000 and width of 25:
现在,让我们为我们的参数创建一个初始猜测。这个猜测从x = 0和x = 1,000处的峰值开始,幅度为60,000,电子折叠宽度为80.然后,我们在x = 60,140,220 ......处添加候选峰值,幅度为46,000,宽度为25:
guess = [0, 60000, 80, 1000, 60000, 80]
for i in range(12):
guess += [60+80*i, 46000, 25]
Now, we are ready to perform the fit:
现在,我们已准备好执行拟合:
popt, pcov = curve_fit(func, x, y, p0=guess)
fit = func(x, *popt)
To see how well we did, let's plot the actual y
values (solid black curve) and the fit
(dashed red curve) against x
:
为了看看我们做得多好,让我们绘制实际y值(纯黑色曲线)和拟合(虚线红色曲线)对x:
As you can see, the fit is fairly good.
正如你所看到的,合适性非常好。
Complete working code
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt('data.txt', delimiter=',')
x, y = data
plt.plot(x,y)
plt.show()
def func(x, *params):
y = np.zeros_like(x)
for i in range(0, len(params), 3):
ctr = params[i]
amp = params[i+1]
wid = params[i+2]
y = y + amp * np.exp( -((x - ctr)/wid)**2)
return y
guess = [0, 60000, 80, 1000, 60000, 80]
for i in range(12):
guess += [60+80*i, 46000, 25]
popt, pcov = curve_fit(func, x, y, p0=guess)
print popt
fit = func(x, *popt)
plt.plot(x, y)
plt.plot(x, fit , 'r-')
plt.show()