热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

十分钟搞懂Pytorch如何读取MNIST数据集

前言本文用于记录使用pytorch读取minist数据集的过程,以及一些思考和疑惑吧…正文在阅读教程书籍《深度学习入门之Pytorch》时,文中是如此加载MNIST手写数字训练集的

前言

本文用于记录使用pytorch读取minist数据集的过程,以及一些思考和疑惑吧…

正文

在阅读教程书籍《深度学习入门之Pytorch》时,文中是如此加载MNIST手写数字训练集的:

train_dataset = datasets.MNIST(root='./MNIST',train=True,transform=data_tf,download=True)

解释一下参数

datasets.MNIST是Pytorch的内置函数torchvision.datasets.MNIST,通过这个可以导入数据集。

train=True 代表我们读入的数据作为训练集(如果为true则从training.pt创建数据集,否则从test.pt创建数据集)

transform则是读入我们自己定义的数据预处理操作

download=True则是当我们的根目录(root)下没有数据集时,便自动下载。

如果这时候我们通过联网自动下载方式download我们的数据后,它的文件路径是以下形式:

在这里插入图片描述

其中我们所需要的文件主要在raw文件夹下

train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

接下来,书中是如此加载数据集的

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=5,
shuffle=True)

由于DataLoader为Pytorch内部封装好的函数,所以对于它的调用方法需要自行去查阅。

我在最开始疑惑的点:传入的根目录在下载好数据集后,为MNIST下两个文件夹,而processed和raw文件夹下还有诸多文件,所以到底是如何读入数据的呢?所以我决定将数据集下载后,通过读取本地的MINIST数据集并进行装载。

首先,自定义数据类来继承和重写Dataset抽象类

class DealDataset(Dataset):
""" 读取数据、初始化数据 """
def __init__(self, folder, data_name, label_name,transform=None):
(train_set, train_labels) = self.load_data(folder, data_name, label_name) # 其实也可以直接使用torch.load(),读取之后的结果为torch.Tensor形式
self.train_set = train_set
self.train_labels = train_labels
self.transform = transform
def __getitem__(self, index):
img, target = self.train_set[index], int(self.train_labels[index])
if self.transform is not None:
img = self.transform(img)
return img, target
def __len__(self):
return len(self.train_set)
''' load_data也是我们自定义的函数,用途:读取数据集中的数据 ( 图片数据+标签label '''
def load_data(self,data_folder, data_name, label_name):
with gzip.open(os.path.join(data_folder,label_name), 'rb') as lbpath: # rb表示的是读取二进制数据
y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
with gzip.open(os.path.join(data_folder,data_name), 'rb') as imgpath:
x_train = np.frombuffer(
imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
return (x_train, y_train)

接下来,调用我们自定义的数据类来加载数据集

trainDataset = DealDataset('./MNIST/MNIST/raw', "train-images-idx3-ubyte.gz","train-labels-idx1-ubyte.gz",transform=transforms.ToTensor())
# 训练数据和测试数据的装载
train_loader = torch.utils.data.DataLoader(
dataset=trainDataset,
batch_size=10, # 一个批次可以认为是一个包,每个包中含有10张图片
shuffle=False,
)

通过这种方式便可以大概了解了读取数据集的过程。

接下来,我们来验证以下我们数据是否正确加载

# 实现单张图片可视化
images, labels = next(iter(train_loader))
img = torchvision.utils.make_grid(images)
img = img.numpy().transpose(1, 2, 0)
std = [0.5, 0.5, 0.5]
mean = [0.5, 0.5, 0.5]
img = img * std + mean
print(labels)
plt.imshow(img)
plt.show()

p.s.:其实这里是用cv2.imshow来展示图片,但是我的代码是在jupyter notebook上写的,所以只能通过plt来代替加载。
在这里插入图片描述

数据加载成功~

深入探索

可以看到,在load_data函数中

y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

这个offset=8又是为啥呢?
我们进入MNIST数据集的官方页面进行查看
在这里插入图片描述

通过文档介绍,可以看到
offset的0000-0003是 magic number,所以跳过不读,
offset的0004-0007是items数目
接下来这些代表的就是标签

同理对于

x_train = np.frombuffer(
imgpath.read(), np.uint8, offset=16).reshape(len(y_train)

在这里插入图片描述

根据刚才的分析方法,也可以明白为什么offset=16了


完整代码


1.直接使用pytorch自带的mnist数据集加载

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import cv2
import matplotlib.pyplot as plt
data_tf = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.5],[0.5])]
)
train_dataset = datasets.MNIST(root='./coding/learning/lrdata/MNIST',train=True,transform=data_tf,download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=5,
shuffle=True)
# 实现单张图片可视化
images, labels = next(iter(train_loader))
img = torchvision.utils.make_grid(images)
img = img.numpy().transpose(1, 2, 0)
std = [0.5, 0.5, 0.5]
mean = [0.5, 0.5, 0.5]
img = img * std + mean
print(labels)
plt.imshow(img)
plt.show()

p.s.:记得自己修改root根目录。

2.使用自定义的数据类加载本地MNIST数据集

import numpy as np
import torch
from torch.utils.data import DataLoader,Dataset
from torchvision import transforms
import gzip
import os
import torchvision
import cv2
import matplotlib.pyplot as plt
class DealDataset(Dataset):
""" 读取数据、初始化数据 """
def __init__(self, folder, data_name, label_name,transform=None):
(train_set, train_labels) = load_data(folder, data_name, label_name) # 其实也可以直接使用torch.load(),读取之后的结果为torch.Tensor形式
self.train_set = train_set
self.train_labels = train_labels
self.transform = transform
def __getitem__(self, index):
img, target = self.train_set[index], int(self.train_labels[index])
if self.transform is not None:
img = self.transform(img)
return img, target
def __len__(self):
return len(self.train_set)
def load_data(data_folder, data_name, label_name):
with gzip.open(os.path.join(data_folder,label_name), 'rb') as lbpath: # rb表示的是读取二进制数据
y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
with gzip.open(os.path.join(data_folder,data_name), 'rb') as imgpath:
x_train = np.frombuffer(
imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
return (x_train, y_train)
trainDataset = DealDataset('./coding/learning/lrdata/MNIST/MNIST/raw', "train-images-idx3-ubyte.gz","train-labels-idx1-ubyte.gz",transform=transforms.ToTensor())
# 训练数据和测试数据的装载
train_loader = torch.utils.data.DataLoader(
dataset=trainDataset,
batch_size=10, # 一个批次可以认为是一个包,每个包中含有10张图片
shuffle=False,
)
# 实现单张图片可视化
images, labels = next(iter(train_loader))
img = torchvision.utils.make_grid(images)
img = img.numpy().transpose(1, 2, 0)
std = [0.5, 0.5, 0.5]
mean = [0.5, 0.5, 0.5]
img = img * std + mean
print(labels)
plt.imshow(img)
plt.show()

参考

1.《深度学习入门之Pytorch》- 廖星宇
2.使用Pytorch进行读取本地的MINIST数据集并进行装载
3.顺藤摸瓜-mnist数据集的补充

在这里插入图片描述


推荐阅读
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 第二十五天接口、多态
    1.java是面向对象的语言。设计模式:接口接口类是从java里衍生出来的,不是python原生支持的主要用于继承里多继承抽象类是python原生支持的主要用于继承里的单继承但是接 ... [详细]
  • 开发日志:高效图片压缩与上传技术解析 ... [详细]
  • Flowable 流程图路径与节点展示:已执行节点高亮红色标记,增强可视化效果
    在Flowable流程图中,通常仅显示当前节点,而路径则需自行获取。特别是在多次驳回的情况下,节点可能会出现混乱。本文重点探讨了如何准确地展示流程图效果,包括已结束的流程和正在执行的流程。具体实现方法包括生成带有高亮红色标记的图片,以增强可视化效果,确保用户能够清晰地了解每个节点的状态。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 本文探讨了如何利用Java代码获取当前本地操作系统中正在运行的进程列表及其详细信息。通过引入必要的包和类,开发者可以轻松地实现这一功能,为系统监控和管理提供有力支持。示例代码展示了具体实现方法,适用于需要了解系统进程状态的开发人员。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 本文介绍了如何利用 Delphi 中的 IdTCPServer 和 IdTCPClient 控件实现高效的文件传输。这些控件在默认情况下采用阻塞模式,并且服务器端已经集成了多线程处理,能够支持任意大小的文件传输,无需担心数据包大小的限制。与传统的 ClientSocket 相比,Indy 控件提供了更为简洁和可靠的解决方案,特别适用于开发高性能的网络文件传输应用程序。 ... [详细]
  • 在腾讯云服务器上部署Nginx的详细指南中,首先需要确保安装必要的依赖包。如果这些依赖包已安装,可直接跳过此步骤。具体命令包括 `yum -y install gcc gcc-c++ wget net-tools pcre-devel zlib-devel`。接下来,本文将详细介绍如何下载、编译和配置Nginx,以确保其在腾讯云服务器上顺利运行。此外,还将提供一些优化建议,帮助用户提升Nginx的性能和安全性。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
author-avatar
奕殫的泪
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有