热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

生成式模型和判别式模型

判别式模型(DiscriminativeModel)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有线性回归模型、线性判别分析、支持向量机SVM、神经网络等。生成式模型

判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有 线性回归模型、线性判别分析、支持向量机SVM、神经网络等。

生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x),然后选取使得p(yi|x)最大的yi,即:

常见的生成式模型有 隐马尔可夫模型HMM、朴素贝叶斯模型、高斯混合模型GMM、LDA等

笔记来源http://www.cnblogs.com/fanyabo/p/4067295.html


推荐阅读
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  •     目标检测是计算机视觉一个非常重要的子任务。目标检测需要发现并准确定位自然图片中的物体。在2012年之前,目标检测主要基于手工设计的特征以及传统分类器。2012年以后,出现了 ... [详细]
  • 深度学习: 目标函数
    Introduction目标函数是深度学习之心,是模型训练的发动机。目标函数(objectfunction)损失函数(lossfunction)代价函数(costfunction) ... [详细]
  • 机器学习算法常见面试题目总结,Go语言社区,Golang程序员人脉社 ... [详细]
  • 圣诞节到了,智能菌想送你一份礼物
    关注网易智能,聚焦AI大事件,读懂下一个大时代!(机器学习算法地图见文末)圣诞节的赠书活动来了! ... [详细]
  • Kubernetes联合创始人发布新编程库,助力简化云原生部署
    Kubernetes联合创始人近期宣布推出一款新的编程库,旨在简化云原生应用的部署过程,提高开发效率和系统稳定性。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 回顾与学习是进步的阶梯。再次审视卷积神经网络(CNNs),我对之前不甚明了的概念有了更深的理解。本文旨在分享这些新的见解,并探讨CNNs在图像识别和自然语言处理等领域中的实际应用。 ... [详细]
  • 目标检测之Loss:softmaxLoss和Cross Entropy的讲解
    最大似然估计:就是什么样的参数才能使我们观测的这组数据的概率最大化.;我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(poolin ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
author-avatar
BeckyWang25_966
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有