热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深度学习之CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

背景我们知道,目前,深度学习十分热门,深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习

背景

我们知道,目前,深度学习十分热门,深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。

从广义上来说,NN(或是更美的DNN)可以认为包含了CNN、RNN这些具体的变种形式。神经网络技术起源于上世纪五、六十年代,当时称为感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,对于计算稍微复杂的函数其计算力显得无能为力。

多层感知机的出现:

随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。我们看一下多层感知机的结构:

 

多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。对,这就是我们现在所说的神经网络(NN)!多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形。多层感知机给我们带来的启示是,神经网络的层数直接决定了它对现实的刻画能力——利用每层更少的神经元拟合更加复杂的函数。深度学习之CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

 

DNN 深度神经网络

2006年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层。神经网络真正意义上有了“深度”,由此揭开了深度学习的热潮。

这里的“深度”并没有固定的定义——在语音识别中4层网络就能够被认为是“较深的”,而在图像识别中20层以上的网络屡见不鲜。

为了克服梯度消失,ReLU、maxout等传输函数代替了 sigmoid,形成了如今 DNN 的基本形式。单从结构上来说,全连接的DNN和上图的多层感知机是没有任何区别的。值得一提的是,今年出现的高速公路网络(highway network)和深度残差学习(deep residual learning)进一步避免了梯度弥散问题,网络层数达到了前所未有的一百多层(深度残差学习:152层)。

深度学习之CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

CNN 卷积神经网络

我们看到全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,带来的潜在问题是参数数量的膨胀。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。

另外,图像中有固有的局部模式(比如轮廓、边界,人的眼睛、鼻子、嘴等)可以利用,显然应该将图像处理中的概念和神经网络技术相结合。此时我们可以祭出题主所说的卷积神经网络CNN。对于CNN来说,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。

卷积层之间的卷积传输的示意图如下:

深度学习之CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

RNN 循环神经网络

全连接的DNN还存在着另一个问题——无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。对了适应这种需求,就出现了另一种神经网络结构——循环神经网络RNN。

而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外, 还包含了其自身在(m-1)时刻的输出。

RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。对于t时刻来说,它产生的梯度在时间轴上向历史传播几层之后就消失了,根本就无法影响太遥远的过去。因此,之前说“所有历史”共同作用只是理想的情况,在实际中,这种影响也就只能维持若干个时间戳。为了解决时间上的梯度消失,机器学习领域发展出了长短时记忆单元 LSTM,通过门的开关实现时间上记忆功能,并防止梯度消失。

 

 

参考:https://www.cnblogs.com/DjangoBlog/p/7731819.html


推荐阅读
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 本文将深入探讨 Unreal Engine 4 (UE4) 中的距离场技术,包括其原理、实现细节以及在渲染中的应用。距离场技术在现代游戏引擎中用于提高光照和阴影的效果,尤其是在处理复杂几何形状时。文章将结合具体代码示例,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 2018年热门趋势:轻松几步构建高效智能聊天机器人
    2018年,构建高效智能聊天机器人的简易步骤成为行业焦点。作为AI领域的关键应用,聊天机器人不仅被视为企业市场智能化转型的重要工具,也是技术变现的主要途径之一。随着自然语言处理技术的不断进步,越来越多的企业开始重视并投资于这一领域,以期通过聊天机器人提升客户服务体验和运营效率。 ... [详细]
  • python绘制拟合回归散点图_机器学习之利用Python进行简单线性回归分析
    前言:在利用机器学习方法进行数据分析时经常要了解变量的相关性,有时还需要对变量进行回归分析。本文首先对人工智能机器学习深度学习、相关分析因果分析回归分析 ... [详细]
  • 玩转系统|初遇ChatGPT,我和TA的第一次约会
    最近互联网圈子有一个非常火爆的话题ChatGPT,短短一周的时间就有上百万的用户,如果你不是程序员,也许会问这到底是个什么玩意࿱ ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 短暂的人生中,IT和技术只是其中的一部分。无论换工作还是换行业,最终的目标是成功、荣誉和收获。本文探讨了技术人员如何跳出纯技术的局限,实现更大的职业发展。 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 最详尽的4K技术科普
    什么是4K?4K是一个分辨率的范畴,即40962160的像素分辨率,一般用于专业设备居多,目前家庭用的设备,如 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 随着知识图谱在人工智能领域的广泛应用,这一技术正逐渐成为研究者关注的焦点,并被视为推动AI向认知智能发展的关键工具。本文基于斯坦福大学CS520课程笔记,初步探讨了知识图谱的基本概念及其在不同应用场景中的潜力和价值。 ... [详细]
author-avatar
天秤小果冻cici
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有