热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深度学习框架pytorch学习(一)准备环境

准备环境一、深度学习框架简介二、Tensorflow与Pytorch的比较三、安装开发环境一、深度学习框架简介1、Google阵营最早的是由加拿大团队开发的theano一个机器学习

准备环境

一、深度学习框架简介

二、Tensorflow与Pytorch的比较

三、安装开发环境

一、深度学习框架简介

《深度学习框架pytorch学习(一)准备环境》
《深度学习框架pytorch学习(一)准备环境》

1、Google阵营

最早的是由加拿大团队开发的theano一个机器学习库,现在已经停止更新。接着Google开发了Tensorflow,并且收购了keras这样一个高阶API的命名规范。keras可以使用不同的后端。主流的就是tensorflow2.0。

2、Facebook阵营

2002年推出Torch,2011年推出Torch7,但是这都是基于一种小众语言Lua,2018年将torch与caffe、caffe2强强联合推出pytorch1.0,基于C和C++的后端,2019年五月发布1.1版本。主推Pytorch。值得一提的是caffe是由华人贾扬清开发的。其中pytorch借鉴了一个日本的深度学习框架Chainer的API的设计规范。

3、Amazon AWS阵营

mxnet作为亚马逊的官方框架。值得一提的是mxnet是由华人陈天齐和李沐开发的。

4、微软阵营

微软的CNTK相对比较小众。

二、Tensorflow与Pytorch的比较

在众多的的学习框架下,pytorch和tensorflow作为最主流的两种框架,各自有着怎样的特点呢?pytorch是一种动态图,更加直观和容易理解。而tensorflow为静态图,首先要创建一张图,然后运行图。

pytorch更加适合新手入门,方便debug,而tensorflow更加适合工程项目。因此tensorflow(虽然马上要出tensorflow2.0,据说很好用。)转战pytorch。pytorch能做什么?

《深度学习框架pytorch学习(一)准备环境》
《深度学习框架pytorch学习(一)准备环境》

pytorch的生态:

《深度学习框架pytorch学习(一)准备环境》
《深度学习框架pytorch学习(一)准备环境》

pytorch的三个特点:

  • GPU加速

import torch
import time
print(torch.__version__)
print(torch.cuda.is_available())
a = torch.randn(10000, 1000)
b = torch.randn(1000, 2000)
t0 = time.time()
c = torch.matmul(a, b)
t1 = time.time()
print(a.device, t1-t0, c.norm(2))
device = torch.device('cuda')
a = a.to(device)
b = b.to(device)
# 包含了初始化的时间
t0 = time.time()
c = torch.matmul(a, b)
t2 = time.time()
print(a.device, t2-t0, c.norm(2))
t0 = time.time()
c = torch.matmul(a, b)
t2 = time.time()
print(a.device, t2-t0, c.norm(2))

输出结果:

1.1.0
True
cpu 0.17958474159240723 tensor(141219.6406)
# 因为第一次需要加载,所以以第二次的时间为准。
cuda:0 2.2960894107818604 tensor(141437.2656, device='cuda:0')
cuda:0 0.002928495407104492 tensor(141437.2656, device='cuda:0')

如果print(torch.cuda.is_available())返回False说明pytorch与cuda没有匹配成功。

  • 自动求导

import torch
from torch import autograd
x = torch.tensor(1.)
a = torch.tensor(1., requires_grad=True)
b = torch.tensor(2., requires_grad=True)
c = torch.tensor(3., requires_grad=True)
y = a**2 * x + b * x + c
print('before', a.grad, b.grad, c.grad)
grads = autograd.grad(y, [a, b, c])
print('after:', grads[0], grads[1], grads[2])

  • 常用的网络层
    • nn.linear
    • nn.Conv2d
    • mm.LSTM
    • nn.ReLU
    • nn.Sigmoid
    • nn.softmax
    • nn.CrossEntropyLoss
    • nn.MSE

三、安装开发环境

第一种安装方式:默认没有安装cuda

第一步:安装anaconda5.3.1,默认安装python3.7。

第二步:安装CUDA,搜索Cuda download,下载CUDA Tookit10.0 Download(根据python版本选择相应的CUDA版本),安装完成之后,打开cmd检测安装是否成功。输入nvcc -V,如果失败,需要配置环境变量。

第三步:配置环境变量。CUDA默认安装路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin,打开我的电脑属性,将上述路径添加到环境变量中。

第四步:安装pytorch。打开pytorch官方网站,点击相应的选择,以管理员权限运行cmd中执行下面自动生成的命令。

conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -c defaults -c numba/label/dev

《深度学习框架pytorch学习(一)准备环境》
《深度学习框架pytorch学习(一)准备环境》

如果出现安装速度太慢,可以考虑换源,使用清华源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

速度还是可以的,如果还是不行那就再试试科大或者阿里。

建议,安装完成之后再把这个源删了,还是使用默认的源。以避免以后装一些包会报错。

conda config --remove-key channels

安装完成以后,默认会安装一些附属的包,比如torchvision等。

第二种安装方式:默认已经安装cuda

第一步:首先去清华镜像下载pytorch

https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

找到对应的版本下载即可,我的是python3.6,cuda9.0。

《深度学习框架pytorch学习(一)准备环境》
《深度学习框架pytorch学习(一)准备环境》

第二步:打开anaconda prompt,执行如下操作

(base) D:\software\Anaconda3>conda install --offline -n base pytorch-nightly-1.0.0.dev20190101-py3.6_cuda90_cudnn7_0.tar.b

(注意 base是默认的虚拟环境,回车等待安装即可)

离线安装是真的快~~~!!!

我是尾巴

之前就一直觉得tensorflow的debug让人极其不爽,虽然keras使用起来很方便,但是对于学习来说还是要学pytorch,20190902从今天开始。

本次推荐:

[pytorch中文官方文档](https://pytorch-cn.readthedocs.io/zh/latest/)

[windowns下配置tensorflow环境](https://www.cnblogs.com/zhangkanghui/p/10756630.html)

继续加油~


推荐阅读
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
  • Python并行处理:提升数据处理速度的方法与实践
    本文探讨了如何利用Python进行数据处理的并行化,通过介绍Numba、多进程处理以及Pandas DataFrame上的并行操作等技术,旨在帮助开发者有效提高数据处理效率。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文将介绍如何使用 Go 语言编写和运行一个简单的“Hello, World!”程序。内容涵盖开发环境配置、代码结构解析及执行步骤。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 随着生活节奏的加快和压力的增加,越来越多的人感到不快乐。本文探讨了现代社会中导致人们幸福感下降的各种因素,并提供了一些改善建议。 ... [详细]
  • Python中HOG图像特征提取与应用
    本文介绍如何在Python中使用HOG(Histogram of Oriented Gradients)算法进行图像特征提取,探讨其在目标检测中的应用,并详细解释实现步骤。 ... [详细]
author-avatar
kyle_G_476
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有