热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深度学习几大主流框架的对比

简介文档与性能网络与模型能力生态与维护框架搭建与应用架构1Ten

    • 简介
    • 文档与性能
    • 网络与模型能力
    • 生态与维护
    • 框架搭建与应用
    • 架构
      • 1 TensorFlow
      • 2 Caffe
      • 3 MXNet
      • 4 Paddle
      • 5 CNTK
    • 总结


1.简介

这里写图片描述

2.文档与性能

这里写图片描述

3.网络与模型能力

这里写图片描述
这里写图片描述

4.生态与维护

这里写图片描述

5.框架搭建与应用

这里写图片描述

6.架构

6.1 TensorFlow

这里写图片描述

6.2 Caffe

这里写图片描述

6.3 MXNet

这里写图片描述
这里写图片描述

6.4 Paddle

主要从以下几个方面入手:多机并行架构、多GPU并行架构、sequence序列模型以及大规模稀疏训练;

6.5 CNTK

这里写图片描述

7.总结

1). 有关图像的问题使用caffe很方便,训练只需要写prototxt;
2). Caffe是目前产品化最多的库;
3). 应该多关注TensorFlow,毕竟有Google这样的亲爹;
4). 用TensorBoard去观察训练的状态;
5). 可以了解和学习一下mxnet,对显存利用率高;


推荐阅读
  • 百度AI的2020
    百度AI的2020-世界的2020,是充满不确定性的变局之年;中国的2020,是团结一心、共克时艰、于变局中开新局的希望之年;百度AI的2020,是坚定信念,拥抱变化,践行“科技为 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 计算机视觉初学者指南:如何顺利入门
    本文旨在为计算机视觉领域的初学者提供一套全面的入门指南,涵盖基础知识、技术工具、学习资源等方面,帮助读者快速掌握计算机视觉的核心概念和技术。 ... [详细]
  • 华为200万年薪招聘AI应届生——有多少本事,给多少钱
    据新浪科技报道,阿里AIlabs年薪百万美元引进两位科学家。除AI顶尖科学家外,华为也是为多位AI应届博士开出了200万的高价年薪。19年9月,各大互联招聘企业陆续发布2019年人 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • 图像分类算法的优化策略与实践
    本文探讨了《Bag of Tricks for Image Classification with Convolutional Neural Networks》论文中的多项技术,旨在通过具体实例和实验验证,提高卷积神经网络在图像分类任务中的性能。文章详细介绍了从模型训练加速、网络结构调整到训练参数优化等多个方面的改进方法。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • TensorFlow 2.0 中的 Keras 数据归一化实践
    数据预处理是机器学习任务中的关键步骤,特别是在深度学习领域。通过将数据归一化至特定范围,可以在梯度下降过程中实现更快的收敛速度和更高的模型性能。本文探讨了如何使用 TensorFlow 2.0 和 Keras 进行有效的数据归一化。 ... [详细]
  • 吴裕雄探讨混合神经网络模型在深度学习中的应用:结合RNN与CNN优化网络性能
    本文由吴裕雄撰写,深入探讨了如何利用Python、Keras及TensorFlow构建混合神经网络模型,特别是通过结合递归神经网络(RNN)和卷积神经网络(CNN),实现对网络运行效率的有效提升。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 聊聊 中国人工智能科技产业 区域竞争力分析及趋势
    原文链接:聊聊中国人工智能科技产业区域竞争力分析及趋势最近看了一个关于国内AI的报告《中国新一代人工智能科技产业区域竞争力评价指数(2021ÿ ... [详细]
author-avatar
手机用户2602884633
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有